
Generating Abstract and Real-World Coding

Exercises with Adjustable Difficulty

Thomas James TIAM-LEE & Kaoru SUMI

Future University Hakodate, Japan

g3117002@fun.ac.jp

Abstract: We developed an approach for automatically generating abstract and real-world

coding exercises with adjustable difficulty. Using our approach, we can produce exercises

based on abstract computational operations for learning the syntax of a programming

language, and exercises based on real-life contexts for learning abstraction and logic

formulation. We present an initial evaluation of the exercises by students and teachers of

programming. This work can pave the way for the development of intelligent programming

tutors with adaptive and personalized feedback that can display content based on the state of

the student.

Keywords: Programming, education, content generation

1. Introduction and Related Studies

Previous work on intelligent programming tutors display different types of adaptive feedback to

students while learning programming. In Ask-Elle, hints are given as feedback based on the

student’s code (Gerdes, Heeren & Jeuring, 2017). In Java Sensei, empathetic responses are given

based on the student’s detected emotion (Cabada et al., 2015). In our previous work, we developed a

system for programming practice that offers a guide and adjusts the difficulty of the problems based

on the presence of confusion (Tiam-Lee & Sumi, 2018).

In this paper, we discuss an approach for generating coding exercises as adaptive feedback

for learning programming, which few studies have explored. Previous work on this domain have

either focused on generating tracing and debugging exercises, such as that found in the work of

Wakatani & Maeda (2016) or relied on parameterized questions, such as those found in the work of

Prados et al. (2005) and Hsiao, Brusilovsky & Sosnovsky (2009). In this paper, we instead discuss

an approach for generating coding exercises that have flexibility to produce exercises that vary in

terms of solution structure and difficulty.

2. Generation of Programming Exercises

We represent an exercise as a set of nodes arranged in a flowchart-like structure, which represents

the sequence of operations in a solution for the exercises. We generate exercises based on abstract

computations by procedurally combining nodes to form an exercise structure. First, the structure of

the exercise is generated (Figure 1a). Then, an algorithm ensures that all operations are relevant to

the output (Figure 1b). Finally, the remaining parameters are randomly assigned (Figure 1c). In this

exercise, the difficulty can be adjusted by setting the number of nodes or operations to be performed

in the exercise. The exercise text can be generated by mapping of each node configuration to text.

We generate exercises based on real-world computations by mapping real-world

computations such as getting the area of a square or converting meters to feet to a flowchart

structure. Each computation also has a set of requirements that need to be fulfilled by a simple plot

planning algorithm. For example, if the chosen action is computing the area of a square in feet, then

the plot planning algorithm should produce a story in which the length of the side of a square object

is given in feet, and there is some intention to compute the area of that object. In this type of exercise,

difficulty can be adjusted based on the type of the computation chosen, and difficulty can be further

95

Yang, J. C. et al. (Eds.) (2018). Proceedings of the 26th International Conference on Computers
in Education. Philippines: Asia-Pacific Society for Computers in Education

increased by performing regression on the chosen computation. For example, when regression is

applied to the action to compute the area of a square in feet in the action to covert meters to feet, then

the problem should now give the length of the side of the square object in meters. The solution

would now be to convert the value to feet first, and then compute the area. Once the computations

have been determined, we use a backward state-space search planner on a domain commonsense

knowledge base to produce a simple narrative that serves as the context of the computation, like a

Mathematics word problem. Table 1 shows examples of exercises generated by our approaches.

Figure 1. Exercise generation process. In (a), the exercise structure is generated. In (b), all nodes are

ensured to be relevant to the output. In (c), the remaining parameters are assigned.

3. Initial Evaluation

We perform an initial evaluation of the generated exercises by seeking feedback from students and

teachers of programming. For the student evaluation, the participants are 13 students in a Japanese

university. The students were asked to rate each exercise on two criteria on a 5-point Likert scale: (1)

how easy it is to understand and (2) how engaging it is to answer. Table 2 shows the results.

On average, the score for “how easy it is to understand” is 4.08 for the abstract level

questions and 3.75 for the real-world level questions. A common feedback cited on real-world level

questions is some student’s unfamiliarity with some concepts such as “body mass index” and “feet”.

On average, the score for “how engaging it is” is 3.52 for the abstract level questions and 3.75 for the

real-world level questions. Some students think that the exercises in the abstract level are repetitive.

We also sought the qualitative feedback of 7 programming teachers handling university

programming courses. Most of the teachers have stated that the exercises on the abstract level are

usable for teaching programming (5), but are simple and straightforward (6) so it is appropriate for

beginners (3). Some teachers stated that the exercises do not require students to analyze the problem

on a higher level (2). Some teachers stated that they perceive the exercises on the real-world level to

be of higher quality (3). Reasons cited are because they are relevant to real world concepts (3) and

they are not straightforward and thus require the student to do a higher level of analysis (1).

However, some teachers stated that the types of computations in the examples given to them are

simple and limited for practical use (2). Almost all the teachers have stated that the exercises in the

abstract level are easy to understand (6). One of the teachers is concerned that the lack of an

intention in the context of a real world may cause the exercises to be difficult to understand (1).

Some teachers have stated that the real-world context of the problems allow students to

imagine and understand them better (3), but there are also concerns that the irrelevant story

components that are not necessary for the problem could cause distractions in understanding (2). A

common concern is that the grammar and wording of the sentences sound unnatural (3) and could

affect understanding. For example, names are repeated instead of using pronouns.

The teachers perceived the exercises in the abstract level as a way for teaching students the

syntax of the programming languages such as remember the syntax of an if-else statement or

remembering how to write arithmetic expressions (5), while the exercises generated in the

real-world are more appropriate for logic formulation and/or mapping real-world relationships to

programming statements (4), although the types of computations might need to be diversified for it

to become very useful. The two different levels of abstraction can potentially be used to target

different aspects of coding skill.

96

Table 1

Examples of Exercise Generated with Abstract and Real-World Computational Operations

Complete the

function. If -4 is

not equal to I1,

return 4.

Otherwise return

7.
int func(int

I1) {

}

Complete the function.

If I1 and -3 have

different values, return

6. Otherwise do the

instructions in A.

A: If 2 is less than or

equal to I2, return 7.

Otherwise return 7.
int func(int I1,

int I2){

}

Cloud is a doctor.

Cloud wants to buy a

new stethoscope for

work. A stethoscope

costs A yen. Cloud has

a total of B yen.

Complete the function

which should return

yes if Cloud has

enough money to buy

the stethoscope, or no

otherwise.
String

func(double A,

double B) {

}

Thomas is overweight. Thomas

wants to get more fit. Thomas

weighs A pounds. The height of

Thomas is B feet. Complete the

function that computes the body

mass index (BMI) of Thomas.

To compute the BMI, divide the

weight in kilograms by the

height in meters squared. 1 meter

is 3.28084 feet. 1 kilogram is

2.20462 pounds.
double func(double A,

double B) {

}

Table 2

Results of Student Evaluation

 Abstract Real-World

How easy to understand is it? Avg. (Std. Dev.) 4.08 (1.57) 3.67 (1.42)

How engaging is it? Avg. (Std. Dev.) 3.52 (1.44) 3.75 (1.37)

References

Cabada, R. Z., Estrada, M. L. B., Hernández, F. G., & Bustillos, R. O. (2015, July). An affective learning

environment for java. Advanced Learning Technologies (ICALT), 2015 IEEE 15th International

Conference (pp. 350-354). IEEE.

Gerdes, A., Heeren, B., Jeuring, J., & van Binsbergen, L. T. (2017). Ask-Elle: an adaptable programming tutor

for Haskell giving automated feedback. International Journal of Artificial Intelligence in Education,

27(1), 65-100.

Hsiao, I. H., Sosnovsky, S., & Brusilovsky, P. (2009, September). Adaptive navigation support for

parameterized questions in object-oriented programming. European Conference on Technology

Enhanced Learning (pp. 88-98). Springer, Berlin, Heidelberg.

Prados, F., Boada, I., Soler, J., & Poch, J. (2005). Automatic generation and correction of technical exercises.

International conference on engineering and computer education: Icece (Vol. 5).

Tiam-Lee, T. & Sumi, K. (2018). Adaptive feedback in a system for programming practice. International

conference on intelligent tutoring systems (pp. 243 - 255). Springer.

Wakatani, A., & Maeda, T. (2016, August). Evaluation of software education using auto-generated exercises.

Computational Science and Engineering (CSE) and IEEE Intl Conference on Embedded and Ubiquitous

Computing (EUC) and 15th Intl Symposium on Distributed Computing and Applications for Business

Engineering (DCABES), 2016 IEEE Intl Conference (pp. 732-735). IEEE.

97

