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Abstract: In this paper, we characterize the gaze collaboration patterns of successful and 

unsuccessful programming pairs as they traced and debugged fragments of code. A dual eye 

tracking experiment was performed on pairs of novice programmers and their fixation 

sequences were analyzed using Cross-Recurrence Quantification Analysis (CRQA), which 

is an analysis on cross-recurrence plots (CRP).  Other eye tracking metrics were also used. 

Findings revealed that successful and unsuccessful pairs can be characterized distinctively 

based on their CRQA results, CRPs, and other eye tracking metrics. Successful pairs have 

more incidences of low CRQA reflected on their CRPs as single and isolated points, 

presence of more white bands and empty regions, and few rectangular segments known as 

laminar or “trapped” states. On the other hand, the unsuccessful pairs have more 

occurrences of high CRQA manifested on their CRPs as heavily clustered points and 

visually recurring patterns because of their more pronounced similar scan and fixation 

cluster patterns compared to successful pairs. Other eye tracking metrics also provided 

differentiation between the successful and unsuccessful pairs. These preliminary findings 

provide the groundwork to objectively quantify and characterize collaboration among 

programming pairs and can also be used in similar studies to strengthen pair programming.  
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1. Introduction

In recent years, dual eye tracking has been used to study joint attention in pair programming 

(Pietinen et al., 2008; Jermann, Nüssli & Dillenbourg, 2011; Olsen et al., 2015). Two eye trackers 

can be utilized to study the gaze of two individuals working together to solve a problem (Pietinen et 

al., 2008). We begin this paper with the definitions of its three foundational concepts: the use of eye 

tracking to quantify collaboration, the concept of joint attention and its effect on collaboration, and 

pair programming. 

Eye tracking is a technique whereby an individual’s eye movements are measured so that 

the researcher knows where a person is looking at any given time, and how their eyes are moving 

from one location to another (Poole and Ball, 2006). Eye tracking methodologies have been applied 

to collaborative tasks either as a tool to understand interpersonal communication or describe how 

collaboration unfolds based on gaze patterns. For example, studies have investigated how quickly a 

test participant fixates on a target after it is mentioned by the partner (Richardson & Dale, 2005). 

These and similar measures indicate how well the listener understood what the partner said. 

In collaborative learning situations, an indicator of productive collaboration is joint 

attention, i.e., “attending to something together with someone and being aware that both are 

attending” (Schilbach, 2015). Joint attention occurs when participants synchronize their gazes. Prior 

research has associated that the more joint visual attention partners share, the more productive 

collaboration often is (Jermann, Nüssli & Dillenbourg, 2011; Schneider & Pea; 2013). 

Finally, pair programming is a form of collaborative learning where two programmers 

execute programming activities together. It may be co-located, where programmers share a single 

screen or may occur remotely or in a spatially distributed mode in which programmers look at the 

same code but on different screens (Baheti, 2002). It is a popular collaboration paradigm used in 

teaching introductory programming courses, with research showing benefits to students’ learning 
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and attitudes towards programming, better quality of code, greater student confidence, increased 

likelihood of success in programming courses, faster completion of tasks, and attainment of goals 

that would seem difficult or impossible on an individual basis (Hannay, Arisholm, & Sjøberg, 2009; 

Olsen et al., 2015). 

Eye tracking studies that used joint attention to assess collaboration in pair programming 

often employ the use of gaze coupling (Richardson & Dale, 2005), which refers to moments when 

the participants are looking at the same target. These studies claimed that eye gaze coupling could be 

an indicator of quality interaction and better comprehension (Richardson & Dale, 2005) and could 

reflect tightness of collaboration (Pietinen et al., 2008; Jermann, Nüssli & Dillenbourg, 2011). There 

is also evidence that moments of joint attention, particularly gaze patterns during program 

comprehension, are related to deeper and complex processing and the overall gaze coupling level is 

strongly related to the quality of the collaboration (Nüssli, 2011).  

The goal of this paper is to characterize gaze collaboration patterns of novice programming 

pairs in the act of tracing fragments of code and debugging. To this end, we make use of an analysis 

method known as Cross-Recurrence Quantification Analysis (CRQA; to be discussed in greater 

detail in section 2). This paper attempts to answer the following: (1) Is there a significant difference 

on the CRQA results between successful and unsuccessful programming pairs? and (2) What 

characterizes the gaze collaboration patterns of successful and unsuccessful programming pairs 

using cross-recurrence plots and other eye tracking metrics? In this paper, the success of the 

collaboration is based on the debugging scores of the pairs. Our previous studies on the use of 

CRQA characterized gaze collaboration patterns according to the participants’ prior knowledge 

(Villamor et al., 2017, Villamor & Rodrigo, 2017a), both prior knowledge and degree of 

acquaintanceship (Villamor & Rodrigo, 2017b), and determining leader-follower profiles (Villamor 

& Rodrigo, 2017c). 

The primary goal of this research is to be able to build an explanatory model on the dynamics 

of pair programming as well as a predictive model capable of predicting the performance of the pairs 

using collaborators’ profiles and behavioral indicators that can be automatically assessed and 

quantified. We intend to look at the pairs’ collaboration as a whole as well as the individual 

differences of the collaborators within pairs and how these differences impact the success of the 

pairs. This study endeavors to contribute to this goal by investigating the coupling between the 

collaborators’ gazes measured using CRQA to see whether the degree of coupling visualized by 

means of cross-recurrence plots (CRPs) can be used to distinguish successful and unsuccessful 

programming pairs. In addition to CRQA results and CRPs, other eye tracking metrics are also 

explored to provide support for the distinction between these programming pair categories. 

  

 

2. Gaze Cross-Recurrence Plot 
 

A cross-recurrence plot (CRP) is an N x N matrix, which is a representation of the time coupling 

between two time series. It is a form of a visualization which shows the simultaneous occurrence of 

similar states. Essentially, its purpose is to compare the states of two time series given the condition 

that the data should have the same unit and have the same phase space reconstruction. For example, 

in eye tracking, two fixation sequences from different collaborators, where each sequence contains 

the fixation x- and y-coordinates and the fixation timestamps can be used as the two time series. A 

cross-recurrence occurs when two fixations from different sequences land within a given threshold 

of each other using some distance metric (e.g., Euclidean distance). If fixations i and j are recurrent, 

they are represented as a black point or pixel on the plot. A CRP depicts fixations that are recurrent at 

their respective times. Figure 1.a shows an example of a CRP. The horizontal and vertical axes 

represent the time for the first and second collaborators, respectively. For example, both 

collaborators in Figure 1.a started at about the same time, which is about 2250 seconds past the 

starting time of the experiment. 

On the CRP, different types of small-scale structures called textures may be identified 

(Marwan et al., 2007). Fading portions to the upper left and lower right corners mean that the data is 

non-stationary. Single and isolated recurrence points reflect random and strong fluctuations in the 

data. Horizontal and vertical lines and rectangular clusters denote that some states do not change or 

change very slowly for some time, which is an indication of laminar or “trapped” states. Bands of 
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white space indicate that transitions may have occurred and may reflect an underlying state change. 

This also means that the two collaborators uninterruptedly looked at two different spots on the 

screen. The empty regions indicate that the states within this period do not occur at any other times, 

which means that the states are unique. Diagonal lines parallel to the main diagonal of the plot means 

that a segment of one trajectory runs almost parallel to another segment. In eye tracking, this means 

that the collaborators looked at the same spot on the screen continuously. 

 

  
(a) (b) 

Figure 1. (a) An Example of a Cross-Recurrence Plot and (b) Scan Patterns using a Line Graph. 
 

To understand better the relationship of CRPs and collaborative eye tracking, we 

demonstrate an example using one of the case scenarios in this study. Figure 2 shows snapshots of a 

program used as a stimulus in this experiment overlaid with colored circles. The colored circles are 

the fixation points of the two collaborators in this pair. The snapshot on the left with aqua-colored 

circles is for the first collaborator, and on the right with purple-colored circles is for the second 

collaborator. Above these snapshots are the times (in seconds) past the starting time of the eye 

tracking experiment when these fixations occurred. At these times, we can see how the fixation 

points are positioned at about the same location on the stimulus making these fixations recurrent 

based on a set threshold. In Figure 1.a, part of the pixelated regions enclosed in a red circle on the 

CRP informs us that the fixation points of the two collaborators under these specific times are 

recurrent. 

 

First Collaborator (TIME: 2467 seconds) Second Collaborator (TIME: 2440 seconds) 

  
Figure 2. Snapshots of the location of the fixation points of the two collaborators. 

 
Figure 1.b is the corresponding scan pattern using a line graph of the CRP in Figure 1.a. 

The two subplots illustrate the side-by-side comparison of the fixation x-coordinates (top subplot) 

and the fixation y-coordinates (bottom subplot) of the two collaborators. The aqua and purple line 

graphs refer to the first and second collaborators, respectively. The x-axes on the subplots represent 

the combined timeline of the two collaborators, and the y-axes represent the range of possible 

values of the fixation x- and y-coordinates, which is between 0 and 1 (reversed). The sections of the 

scan patterns enclosed in red circles in Figure 1.b show the positions in the timeline when these 

0.5 

0.5 

2467 

2440 
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fixations occurred. We can also see that the fixation x- and y-coordinates are positioned at about 0.5, 

which suggest that these fixation points from the two collaborators are indeed recurrent. 

Analysis using CRPs is called Cross-Recurrence Quantification Analysis or CRQA (Zbilut, 

Guiliani & Webber, 1998). This determines how frequently two systems exhibit similar patterns of 

behavior over time by taking two different trajectories of the same information as input and 

performing a test for “closeness” between all the points of the two trajectories. This process is 

visualized using a CRP. Using CRQA, several metrics can be extracted from the diagonal and 

vertical dimensions of the CRP. These are recurrence rate, determinism, average and longest 

diagonal length, and entropy for the diagonal dimension;  and laminarity and trapping time for the 

vertical dimension. 

Cross-Recurrence Rate (RR) represents the “raw” amount of similarities between the 

trajectories of the two systems, which refers to the degree to which they tend to visit similar states. 

In eye tracking, this represents the percentage of cross-recurrent fixations that is indicative of the 

degree of gaze coupling or joint visual attention. Determinism (DET) is the proportion of recurrence 

points forming long diagonal structures of all recurrence points. Relative to eye tracking, this refers 

to the percentage of identical scanpath segments of a given minimal length in the two scanpaths. 

The average diagonal length (L) reports the duration that both systems stay attuned. In eye 

tracking, this is the time where the scanpaths of the two collaborators run parallel for some time. The 

longest diagonal length (LMAX) denotes the longest uninterrupted period that both systems are in 

sync, which can be used as an indicator of stability of the coordination. In eye tracking, this 

represents the prolonged synchronization of the collaborators’ scanpaths. Entropy (ENTR) measures 

the complexity of the attunement between systems. In eye tracking, this represents the complexity of 

the relation between scanpaths of the two eye movement data. ENTR is low if the diagonal lines tend 

to all have the same length, signifying that the attunement is regular; otherwise, ENTR is high if the 

attunement is complex. 

Vertical structures in a CRP quantify the tendency of the trajectories to stay in the same 

region. The laminarity (LAM) of the interaction refers to the percentage of recurrence points forming 

vertical lines, whereas trapping time (TT) represents the average time two trajectories stay in the 

same region. In eye tracking, these metrics indicate the prolonged duration where the collaborators 

focus on certain regions of the screen, either to denote increased concentration or problems in 

comprehension. For a more detailed discussion of these metrics, refer to Marwan et al. (2007). 

 

 

3. Methods 
 

The study was conducted in 6 universities in the Philippines recruiting students who were in their 2nd 

to 4th year level in college and who had already taken their college-level fundamental programming 

course. Eighty-four (84) participants, 56 males and 28 females, were randomly paired regardless of 

gender and programming experience resulting in a total of 42 pairs. The task was to locate and mark 

the bugs in the 12 programs containing errors. The programs contained syntax, semantic, logic or a 

combination of these types of errors. Program complexity was categorized as easy, moderate, and 

hard depending on the type of errors the program contained. The distribution of the programs based 

on difficulty was as follows: easy (programs 1-3 and 10), moderate (programs 4-6 and 11), and hard 

(programs 7-9, and 12). Programs 1-3 contained a single bug and the rest had three bugs. The 

program comprehension test result was used to divide the participants into high and low proficiency 

levels. For a detailed description of the structure of the study and data cleaning and preparation, see 

Villamor and Rodrigo (2018). 

A CRP was constructed for every program under each pair, and CRQA metrics were 

derived for each of the 12 programs. This was done using the CRP toolbox for MATLAB (Marwan 

et al., 2007). The CRQA parameters delay and embed were both set to one, and the threshold was set 

to a default of 10% of the maximal phase space diameter (Schinkel, Dimigen, & Marwan, 2008). 

Threshold adjustments were performed as needed due to varying fixation counts. This was to ensure 

that the threshold was neither too small nor too large. If the threshold is too small, the recurrence 

structure of the underlying trajectory may not provide us enough information. If the threshold is too 

large, almost every point is a neighbor of every other point, which could cause thicker and longer 

diagonal structures in the CRP as they actually are. 

116



Two levels of granularity were used in the analysis: pair-level (average of all 12 programs) 

and case-level (all individual programs under each pair). A pair is successful if their average 

debugging score for the 12 programs is greater than or equal to the mean score; otherwise, the pair is 

unsuccessful. A case is successful when both participants within a pair are able to get at least half of 

the bugs in a program. Otherwise, if only one participant gets at least 50% of the bugs or both fail to 

spot the bugs, then the case is unsuccessful. A t-test for independent sample means at the 0.05 level 

of significance was performed to test for statistically significant differences on the CRQA results 

and other metrics between successful and unsuccessful pairs as well as successful and unsuccessful 

cases. 

 

 

4. Results and Discussion 
 

4.1 Differences in CRQA Results and CRPs 
 

Of the 42 pairs, one pair was discarded due to huge fixation count discrepancies between 

collaborators, i.e., one had very high fixation count and the other had very low fixation count in all 

12 programs. Other fixation sequences with very low fixation counts were not good candidates for 

CRQA and thus were not included. Hence, only 376 cases were used in this part of the analysis. Of 

the 41 pairs, there were 19 successful and 22 unsuccessful pairs. Of the 376 cases, there were 196 

successful and 180 unsuccessful cases. Pair-level t-test results showed no significant differences on 

the CRQA results. On the case level, significant differences were found on the CRQA results 

between successful and unsuccessful cases at RR (t = 6.981, p = 0.000), DET (t = 5.476, p = 0.000), 

L (t = 5.378, p = 0.000), LMAX (t = 3.435, p = 0.001), ENTR (t = 5.314, p = 0.000), LAM (t = 5.342, 

p = 0.000), and TT (t = 4.696, p = 0.000). 

Incidences of high and low instances of each CRQA metric in the successful and 

unsuccessful cases were examined to account for the differences between successful and 

unsuccessful cases. A CRQA value is high if it is equal to or greater than the mean plus one standard 

deviation; and low if it is equal to or lesser than the mean minus one standard deviation. Table 1 

shows the descriptive values of the CRQA metrics, which covers the mean, standard deviation, the 

minimum and maximum values, and bases for low and high CRQA values. The large majority of the 

CRQA values in both categories were average. However, the successful and unsuccessful cases had 

more instances of low and high values, respectively, in all CRQA metrics. Figure 3 shows the 

percentage distribution of high and low CRQA values using a stacked column graph. 

 
Table 1 
 
Descriptive Values of the CRQA Metrics (N = 376) 

 

CRQA Metric Mean 
Standard 

Deviation 
Minimum Maximum Low <= High >= 

 

 RR 0.40 0.13 0.04 0.76 0.27 0.54 
 

 DET 0.78 0.12 0.36 0.97 0.66 0.90 
 

 L 3.75 1.02 2.26 7.54 2.73 4.77 
 

 LMAX 27.44 17.13 5.00 111.00 10.31 44.58 
 

 ENTR 1.68 0.44 0.63 2.74 1.24 2.13 
 

 LAM 0.86 0.09 0.52 0.98 0.78 0.95 
 

 TT 5.23 1.82 2.34 5.23 3.41 7.04 
 

 
Of the 196 successful cases, 125 cases or 63.78% were from the 19 successful pairs.  Since 

this was more than the majority, we can characterize the successful pairs as having more incidences 

of low RR, low DET, low L, low LMAX, low ENTR, low LAM, and low TT.  On the other hand, of the 

180 unsuccessful cases, 112 of these or 62.22% were from the 22 unsuccessful pairs, which was also 

more than the majority.  Hence, the unsuccessful pairs can be characterized as having more 

frequencies of high RR, high DET, high L, high LMAX, high ENTR, high LAM, and high TT. 
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Figure 3. Distribution of High and Low CRQA Values. 

 

  The analysis was narrowed down on the 125 successful cases under successful pairs and the 

112 unsuccessful cases under unsuccessful pairs. T-test results also revealed significant differences 

in RR (t = 5.273, p = 0.000), DET (t = 4.455, p = 0.000), L (t = 3.727, p = 0.000), ENTR (t = 3.748, p 

= 0.000), LAM (t = 4.326, p = 0.000), and TT (t = 2.790, p = 0.006) between these categories. The 

difference in LMAX was not significant. The majority of the significant CRQA values were still 

average, but based on the recomputed mean and standard deviation, the successful pairs indeed had 

more occurrences of low RR, low DET, low L, low ENTR, and low LAM. However, the number of 

high LMAX values was greater than the low LMAX values; and the number of high and low values 

for TT were comparable. The unsuccessful pairs also proved to have more values of high RR, high 

DET, high L, high LMAX, high ENTR, high LAM, and high TT. 

To determine further what factors could have contributed to the CRQA differences, we 

extracted all successful pairs (i.e., successful cases under successful pairs) that fit the following 

criteria: low RR, low DET, low L, low LMAX, low ENTR, low LAM, and low TT.  We also extracted 

unsuccessful pairs (i.e., unsuccessful cases under unsuccessful pairs) with high RR, high DET, high 

L, high LMAX, high ENTR, high LAM, and high TT. Fifteen (15) successful pairs and eleven (11) 

unsuccessful pairs fit the criteria. The CRPs were examined to draw out observable differences that 

could potentially explain the characterizations between successful and unsuccessful pairs. We found 

that all 15 successful pairs had fixation counts which were either low or below the average. All but 

one of the 11 unsuccessful pairs had fixation counts which were either high or above the average. 

The low fixation counts could have reduced the possibility of obtaining more recurrent fixations, and 

hence, resulted to more “low RR” in successful pairs; whereas the high fixation counts could have 

increased the likelihood of having more recurrent fixations, which led to more “high RR” in 

unsuccessful pairs. 

Disparities in the CRPs of the successful and unsuccessful pairs were evident. Figure 4 

shows an example of a CRP, scan pattern, and a pair fixation map of one of the successful pairs. The 

low fixation count was depicted on the CRP as mostly single and isolated points and more bands of 

white spaces and empty regions denoting abrupt transitions or state changes. The fixations also 

appeared to be more dispersed as seen on the fixation map and reflected on the scan pattern. On the 

other hand, an example of a CRP, scan pattern, and pair fixation map of one of the unsuccessful pairs 

is shown in Figure 5. The high fixation counts of the unsuccessful pairs resulted to having 

rectangular or larger clusters of points. Visually noticeable recurring patterns were also shown on 

most of the CRPs of the unsuccessful pairs, which were not apparent on the CRPs of the successful 

pairs. It is possible that the heavily pixelated regions and the visual recurring patterns found on the 

CRPs of the unsuccessful pairs is a result of a high degree of gaze coupling or cross-recurrent 

fixations. 

 

   
Figure 4. CRP, scan pattern, and pair fixation map of one of the successful pairs. 
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Figure 5. CRP, scan pattern, and pair fixation map of one of the unsuccessful pairs. 

 
It was also observed that the scan pattern similarities of the unsuccessful pairs were more 

pronounced when compared to the successful pairs. Their fixations also tended to cluster on the 

same area on the screen or same locations in the program as seen on the pair fixation map in Figure 

5. These scan pattern similarities and fixation cluster patterns consequently resulted to a higher 

degree of gaze coupling causing more incidences of high RRs in the unsuccessful pairs. In short, the 

high fixation counts, high degree of scan pattern similarities, and fixation clusters contributed to 

more high RRs, which is a characteristic of unsuccessful pairs. RR happens to be highly correlated to 

DET (r = 0.904, p = 0.000), L (r = 0.904, p = 0.000), LMAX (r = 0.785, p = 0.000), ENTR (r = 0.923, 

p = 0.000), LAM (r = 0.828, p = 0.000), and TT (r = 0.852, p = 0.000), and hence, when RR increases, 

these other CRQA metrics follow suit. 

Is it possible that the number of bugs, program complexity, and the proficiency of students 

confounded the results? Upon inspection, we found that 11 and 4 out of the 15 successful cases 

representing the successful pairs came from programs that were categorized as easy (with single bug) 

and moderate (three bugs), respectively. On the other hand, 7 and 4 out of the 11 unsuccessful cases 

representing the unsuccessful pairs emanated from programs tagged as hard (three bugs) and 

moderate (three bugs), respectively. Given a single bug to locate, the program difficulty level, and 

general overall proficiency of the successful pairs, it is expected that they would find the bug easily. 

On the other hand, with three errors to uncover from both moderate and hard programs, the 

unsuccessful pairs composed mostly of low proficiency students, would likely have difficulty 

spotting the bugs. Hence, to control for these confounds, successful cases which were representative 

of the hard programs were selected as well as unsuccessful cases that were representative of the easy 

programs containing only a single bug. 

Prior to examining their CRPs and scan patterns, two separate t-tests were performed to 

determine if there were significant differences on the CRQA values between successful and 

unsuccessful cases on easy and hard programs. There were 99 out of the 376 cases that belong to 

easy programs, where 53 of these were successful and 46 were unsuccessful. Significant differences 

were found in terms of RR (t = 4.401, p = 0.000), DET (t = 3.577, p = 0.001), L (t = 3.330, p = 0.001), 

LMAX (t = 2.303 p = 0.023), ENTR (t = 3.458, p = 0.001), LAM (t = 3.239, p = 0.002), and TT (t = 

2.704, p = 0.008) between successful and unsuccessful cases. On the other hand, there were 133 

cases that belonged to hard programs, where 61 of these were successful and 72 were unsuccessful. 

Significant differences were also found in RR (t = 4.020, p = 0.000), DET (t = 3.022, p = 0.003), L (t 

= 3.124, p = 0.002), ENTR (t = 2.975, p = 0.003), LAM (t = 3.436, p = 0.001), and TT (t = 2.781, p = 

0.006) between successful and unsuccessful cases. The difference in LMAX was not significant. 

Eight (8) CRPs each of the successful cases representative of hard programs and 

unsuccessful cases representative of easy programs with a single bug were sampled. While the single 

and isolated points and the presence of more bands of white spaces and empty regions were still 

evident on the CRPs of the successful pairs, small clusters of points were already seen forming 

mostly in vertical and horizontal patterns, which are indications of laminar phases. More incidences 

of these so-called laminar states increase the value of LAM and could also result to a high TT. The 

presence of these laminar states on the CRPs of the successful pairs suggests that they also need 

more time to locate all three errors by concentrating on certain locations where bugs are more likely 

to occur. Nonetheless, these clusters of points were larger and were more prominent in the 

unsuccessful pairs, which could also explain why they had more high LAMs and high TTs. The high 

LAMs and high TTs could be the reason also for the visually recurring patterns found on the CRPs of 

119



the unsuccessful pairs. Referring to the scan patterns of the successful pairs, we also observed that 

the more similar the scan patterns, the more pronounced the pixelated regions were. 

Conversely, there were also isolated incidences of recurrence points found on the CRPs of 

the unsuccessful pairs, but the points were still heavily clustered in most of the CRPs. This could 

mean that given only a single error to locate, the unsuccessful pairs would still have difficulty in 

finding this single error in the program because they need more time to spot the error. The scan 

patterns of the unsuccessful pairs also seemed to be more similar independent of the time when these 

fixations happened. This further suggests that unsuccessful pairs could be following a certain 

program scanning pattern in finding bugs. 
 

4.2 Differences using other eye tracking metrics 
 

Included in this analysis were all the 376 cases, where the 196 and 180 of these were successful and 

unsuccessful cases, respectively. The metrics we used for this characterization were the following: 

loci similarity, sequence similarity, duration per program, total fixation count per stimulus and per 

area of interest (AOI), total fixation time per AOI, time to first fixation per AOI, and average 

fixation duration per AOI. These metrics were calculated, and the erroneous lines of code were 

converted to AOIs using the OGAMA software (Voßkühler et al., 2008). 

Levenshtein distance, also known as edit distance algorithm (Levenshtein, 2002), was used 

in the computation for the loci similarity and sequence similarity between the collaborators’ 

scanpaths. Loci similarity refers to the percentage of locations both scanpaths have passed by, 

independently of time and sequence. A loci similarity value of 100% denotes that the collaborators’ 

fixations where at the same locations on the stimulus, whereas a sequence similarity value of 100% 

means that the collaborators have identical scanpaths (Voßkühler et al., 2008). To do this, each 

stimulus was divided into a 10 x 10 grid, where each cell in the grid was assigned a unique letter. A 

scanpath was built into a string using the letters of the cell that contained the current fixation location. 

Examples of this grid can be seen on the pair fixation maps in Figures 4 and 5. Levenshtein distance 

was then applied by counting the number of operations (deletions, insertions, substitutions) needed 

to transform one string into the other. For the other metrics, the average values of the two 

collaborators within pairs were used. 

The results of these metrics are shown in Table 2. In the discussion that follows, we will 

refer to successful cases as successful pairs and unsuccessful cases as unsuccessful pairs. The 

unsuccessful pairs have significantly higher loci and sequence similarity than successful pairs. 

These results confirmed the incidences of more “high RR and DET” values in the unsuccessful pairs. 

The duration per program between the successful and unsuccessful pairs was not significant. 

 

Table 2 
 
Descriptive Values of the other Metrics (time is measured in seconds) 

Metric 
Mean Standard Deviation 

t-value p-value 
S UN S UN 

Loci similarity 62.41 64.60 9.96 10.06 2.114 0.035 

Sequence similarity 12.13 13.00 4.29 4.12 2.008 0.045 

Duration per program 1062.32 974.25 737.53 679.22 Not significant 

Total fixation count (stimulus) 579 604 376 324 Not significant 

Fixation count (AOI) 66 86 58 62 3.165 0.002 

Total fixation time (AOI) 19.35 26.91 16.14 26.55 3.367 0.001 

Time to first fixation (AOI) 70.20 61.02 180.46 139.61 Not significant 

Fixation duration mean (AOI) 0.30 0.32 0.07 0.27 Not significant 

 

The total fixation count per stimulus was not significant but the fixation count per AOI was 

significant, with the successful pairs having lower fixation count per AOI than the unsuccessful pairs. 

Since most of the successful pairs were highly proficient, this result is in line with prior research 

findings that highly proficient participants have lower fixation counts than participants with low 

proficiency level. Successful pairs also had significantly shorter fixation times per AOI. This implies 
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that once the successful pairs spot already the error/s and both agree that it is indeed an error, they 

will no longer spend more time on that AOI and will transition to next AOI or program. Hence, the 

successful pairs are more confident with their answers. The unsuccessful pairs, on the other hand, 

may be plagued often with uncertainty or lack of confidence with their answers causing them to 

spend more time on deciding if that particular line or program location contains the erroneous lines 

of codes. Lastly, the time to first fixation and fixation duration mean per AOI were not significant. 

 
 

5. Implications 
 

Attrition rate in introductory programming is known to be high so teachers strategize using various 

methods to reduce this. One of these popular strategies is to engage their students in collaborative 

learning tasks such as pair programming.  As per Schneider and Pea (2013), mutuality of exchanges 

and the degree of joint attention are determinants of a successful collaboration. The outcome of 

collaboration does not solely depend on the contributions of the individuals but also on how 

efficiently group members manage individual and joint attention during collaborative tasks. Hence, 

if the concept of both individual and joint attention can be explored further, this can be used to 

improve the quality of collaboration in programming pairs.  Joint attention can be made intentional, 

and thus, can be increased by encouraging the pairs to connect in more conversational processes that 

will result to a more productive collaboration. This study also emphasizes the importance of 

collaboration and provides a precursor on ways to objectively quantify and characterize 

collaboration among programming pairs. Since this study provides the groundwork to distinguish 

between successful and unsuccessful pairs, this gives us the impression that we can learn how 

successful pairs collaborate and identify what factors make them successful so that others who are 

struggling in programming can do the same.  

 

 

6. Summary, Conclusion, Limitation, and Future Work 
 

This paper characterized the gaze collaboration patterns of successful and unsuccessful 

programming pairs using cross-recurrence plots and its associated metrics as well as other eye 

tracking metrics. Findings revealed that the difference on the CRQA results between successful and 

unsuccessful pairs are significant. The successful pairs are characterized as having lower fixation 

counts on predefined AOIs and more incidences of low CRQA values. The CRPs of the successful 

pairs can be described mostly as having more single and isolated points, presence of more bands of 

white spaces and empty regions, and few rectangular segments of recurrence points. These 

characterizations are indications that successful pairs finish faster, have more preference for 

independent work at certain times, may have shared similar but shorter scanpaths frequently, have 

more frequent scan path transitions, and transition faster so they find bugs quickly. On the other 

hand, the unsuccessful pairs are characterized as having higher fixation counts on predefined AOIs 

and more occurrences of high CRQA values. Their CRPs have evidence of heavily clustered 

recurrence points or larger laminar states and visually recurring patterns. These suggest that 

unsuccessful pairs need lengthy consideration of the program, may have shared similar scanpaths 

that are longer, follow a certain pattern in locating bugs, may look at the same area repeatedly 

because they do not know where else to look, use trial-and-error in debugging, and may usually have 

problems in program comprehension. 

Although the concept of joint attention has been found to be an indicator of productive 

collaboration, this study however lacks the internal validity to make any causal claims about the 

relation between joint attention and programming performance of the pairs. On the question as to 

which one collaborated better, it is still premature to conclude that unsuccessful pairs collaborated 

better than successful pairs based on the degree of gaze coupling alone. If one pair has a high RR and 

another has a low RR, it does not necessarily follow that the former is more coupled, but it may mean 

that they could be working on a smaller area of the screen. The high degree of gaze coupling in the 

unsuccessful pairs could also just be a result of an unintentional gaze coordination, as opposed to a 

gaze coordination that is generated by conversational processes. Hence, to account for this, other 

pair dynamics will be investigated as well as the nature of the discourse. As this is just a preliminary 
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study, other factors (e.g., individuals within pairs, participant profiles, conversational processes, etc.) 

will also be investigated in the future and consider other methodologies to develop a better 

understanding of pair programming and how collaboration impacts the pairs.  
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