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Abstract: In this paper, we investigate the gaze patterns of individuals within pairs as they 

traced and debugged fragments of code. We performed a dual eye tracking experiment, 

recorded their fixations and computed the gaze-based metrics of these individuals. The 

participants within pairs were categorized into a more successful and less successful 

participant based on the number of bugs found. Results suggest that the more successful 

participants acquaint themselves first with the program encoding more information about 
the program, have more increased attention on the erroneous lines of code, strike a good 

balance between processing and searching, read code less linearly, and are more engaged in 

the task. The goal of this study is to capture individual expertise to gain insights on what 

makes the more skilled participants in a pair programming setup efficient and effective 

through their gaze patterns.  
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1. Introduction

Pair programming is a collaborative work arrangement where two programmers execute different 

programming activities together. It may be co-located, i.e., programmers share a single screen or 
may also occur remotely or in spatially distributed mode in which programmers look at the same 

code but on different screens (Baheti et al., 2002). It has become a popular collaboration paradigm 

utilized in teaching introductory programming courses because it has been proven that pair 

programming is beneficial to students’ learning and attitudes towards programming.  
Recent publications related to programming have made use of eye gaze to assess the 

comprehension of C++ and Python source code (Turner et al, 2014), study how programmers read 

source code (Busjahn et al., 2015; Yenigalla et al., 2016; Jbarra & Feitelson, 2017), explore students’ 
cognitive processes while debugging (Lin et al., 2016), observe differences on debugging strategies 

given diverse types of errors (Peng et al.,, 2016), and understand the learning process of coding with 

different age groups (Papavlasopoulou et al., 2017). 

Because it is an indicator of attention, eye gaze has been linked to cognition (Just & 
Carpenter, 1976). This concept of visual attention, mapping it to cognitive states is based from the 

“eye-mind” hypothesis (Poole & Ball, 2006). Eye movements can be tracked to gain a better 

understanding of the path and focus of visual attention during a task. Cognitive processes involved 
in performing a specific task can be inferred if we know which objects have been visually inspected 

including their order and context. Because of this, eye tracking has become one of the promising 

tools to track down the cognitive processes in programming particularly program comprehension. 
Eye movements in terms of saccades (rapid movements) and fixations (short stops), for example, 

can reveal the details of cognitive processing and the allocation of visual attention within a 

programming task.  

The goal of this paper is to investigate and characterize the individual gaze patterns in the 
context of pair programming particularly program tracing and debugging. Specifically, this paper 

attempts to answer the following question: What characterizes the individual gaze patterns of the 

more successful participants and the less successful participants in a pair programming setup? This 
study aims to investigate individual behavioral characteristics of the more successful and less 

successful participants to shed light on what makes one better than the other so that we can learn 
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from the practices of the more successful participants and be able to design remediations that can 
help those who are struggling in programming.  

 

2. Novices vs. Experts on Program Comprehension and Debugging 

 
Researchers confirm that there are indeed differences between experts and novices. Novices are 

characterized as having longer fixation duration and do not read code at the beginning; while experts 
have shorter fixation durations and spend significantly more time on initial code reading (Bednarik 

et al., 2006). Experts are found to perform better and have shorter scan times when reviewing source 

code compared to novices (Sharif, Falcone & Maletic, 2012). Novices exert more effort and 
experience more difficulty reading source code as they progress through the course (Yenigalla et al. 

2016) and tend to adapt the linear “Story Order” when reading natural language text and source code, 

while experts read code less linearly than novices (Busjahn et al., 2015). Researchers speculate that 
novices’ inability to comprehend programs is due to the novices’ tendency to read the code in the 

order it appears rather than in the order it is executed (Nanja & Cook, 1987). 

Programmers are categorized as novices and experts based on their ability to “chunk” the 

program they are debugging (Vessey, 1985). Novices exhibit more inconsistent debugging behavior 
due to their inability to chunk programs, and they use a depth-first search approach focusing on 

locating and correcting the error without understanding the overall program first. On the other hand, 

experts use a breadth-first search approach when debugging, acquainting themselves first with the 
program to obtain a systems view before trying to find the source of the bug. Lin et al. (2016) affirm 

these findings claiming that low-performers tend to debug programs in a trial-and-error manner, are 

more focused on syntax, and fail to create suitable mental models for debugging; while 
high-performers debug programs in a more logical manner because of their “chunking” ability and 

prior knowledge. Experts are likewise much better at debugging by comprehension while novices 

work in isolation to track down the errors one at a time (Nanja & Cook, 1987). 

These studies were primarily focused on novice vs. expert categorization and their 
differences in an individual programming setup. This study is part of our pair programming eye 

tracking study where we endeavor to draw out the dissimilarities between individuals within 

programming pairs to understand their behaviors that lead to optimal error detection. We also want 
to find out whether “novice vs. expert” differences hold true for individuals within pairs.  

 

3. Methods 

 

3.1 Participants, Structure of the Study, Data Cleaning and Statistical Treatment 

 
The study was conducted in 6 universities in the Philippines recruiting 2nd to 4th year level college 
students who had already taken their college-level fundamental programming course. Eighty-four 

(84) participants, 56 males and 28 females, were randomly paired regardless of gender, proficiency 

level, and acquaintanceship resulting in a total of 42 pairs. Two Gazepoint eye trackers were used to 
collect the pairs’ eye movement data. The pairs were shown 12 programs with errors and were 

instructed to mark the location of the errors. There was no need to correct the errors. The participants 

were made aware how many bugs were there in each program. Each of the 12 programs either 

contained a syntax, logic, semantic or a combination of these types of errors. The programs were 
categorized as easy, moderate, or hard depending on the type of error the program contained. 

A slide sorter program with “Previous”, “Reset”, “Clear/Finish” and “Next” buttons was 

created to display the program specifications followed by the erroneous programs. When a 
participant finds a bug, the location of the bug is marked using a mouse-click and the software 

automatically draws an oval on the location. It is possible to remove the oval by pressing the “Reset” 

button. The pairs were told to work with their partner on the problems and collaborate using a chat 
program. Although they were seated together in the same room, they were spaced far enough to 

ensure that all communications with their partner was via chat only. For a more detailed description 

on the structure of the study, see Villamor and Rodrigo (2018). 

Results of the written program comprehension test, which was used to split the participants 
into high and low proficient participants, and the number of bugs identified were recorded. The slide 
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sorter program generated log files for every participant, which contained a recording of buttons 
pressed and if the participant has already marked the location of the bug, the timestamps when these 

buttons were pressed, the slide numbers of the program specification and actual programs, and the x 

and y screen coordinates of the ovals that appeared after the mouse click.  

The fixation data was cleaned first by removing fixations with negative x- and y- gaze 
coordinates. The number of fixations per slide that contained the actual program were segmented 

and saved on separate files. Hence, each participant had at most 12 fixation files (some pairs did not 

finish the 12 programs). The segmentation was done with the help of the information contained in 
the slide sorter program log files. To test for statistically significant differences, a t-test for 

independent sample means at the 0.05 level of significance was performed.  

 

3.2 Eye Tracking Metrics  

 
Two primary eye movement measurements used in eye tracking research are fixations and saccades. 

Fixations refer to moments when the eyes are relatively stationary, which reveal that information 

from the scene is acquired. Saccades are quick eye movements occurring between fixations, which 

can be related to a searching sequence of particular areas of interest. We used fixation-derived and 
saccade-derived metrics to characterize the gaze patterns of the individuals within pairs. These 

metrics are the following: fixation count overall and on-target, fixation rate overall, fixation 

duration mean, fixation/saccade ratio, average saccade length, complete fixation time on-target, 
time to first fixation on-target and regressive saccades overall and on-target. To know about these 

metrics, refer to Poole and Ball (2006). The 12 programs served as the stimuli in this study. 

OGAMA software (Voßkühler, 2008) was used to calculate these metrics and to convert each 
erroneous line of code in the program to an area of interest (AOI) so that AOI-based metrics can be 

extracted specifically for these regions.  

Other non-eye tracking parameters were also used such as the duration per program, the 

number of times a participant changed his/her answers through the “Reset” button from the slide 
sorter program, the number of switches from the program specification to the actual erroneous code, 

and the time spent reading the program specification. Aside from these said metrics, we were also 

interested in finding out who between the more successful and less successful participant within 
pairs had more incidences where they saw the bugs (had fixations on the AOI) and marked it, saw 

the bugs but did not mark it, and missed the bugs (no fixations on the AOI) but marked it. To do this, 

we used visualizations such as heatmaps and fixation maps. These visualizations can show the 

general distribution of fixations and attention spots to imply varying levels of attention. 

 

4. Results and Discussion 

 
Of the 84 participants from the 42 pairs, we recorded a total of 970 cases, where a case is defined as 
one of the programs under each pair. Each participant within pairs was categorized as a more 

successful participant (MSP) or a less successful participant (LSP) depending which participant 

found more or fewer bugs in the 12 programs combined. A median split could have been done for the 

entire sample to know where each participant was in terms of the larger sample and then see how 
many were in MSP/LSP pairings. However, this process would leave us with only 8 pairs and 192 

cases to examine.  

Two (2) pairs of participants had the same debugging scores, and hence, were excluded 
reducing the number of cases down to 927. Four of these 927 cases had fixation counts less than 10 

and were also discarded. Of the remaining 923 cases, 464 of these were from the MSPs, while 459 of 

these cases were from the LSPs. The majority of the MSPs (72.62%) and LSPs (63.18%) are high 
and low proficient, respectively. Hence, it is safe to say that pair programming participants who are 

more likely to perform well in a bug-finding task are those that are highly proficient. In the 

discussion that follows, there is a tendency to associate MSPs with “experts” on the basis that the 

MSPs are more proficient in programming compared to the LSPs. To get the aggregate results, the 
eye movement data was averaged over each category (MSPs and LSPs). The mean and standard 

deviation of each significant metric for the two categories as well as the t-test results are shown in 

Table 1. 
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Table 1 
 

Descriptive Values and T-Test Results of Each Significant Metric 
 

Metric 
MSP LSP 

t-value p-value 
Mean Std. Dev. Mean Std. Dev. 

Fixation Count O/A 545 420 491 369 2.057 0.040 

Fixation Count O/T 72 69 61 64 2.490 0.013 

Fixation Rate O/A 1.15 1.03 1.35 1.07 -2.816 0.005 

Fix./Saccade Ratio 322.59 278.97 387.18 295.98 -3.412 0.001 

Ave. Saccade Length 124.32 px 28.33 px 129.57 px 31.06 px -2.684 0.007 

Regressions O/A 123.74 96.58 111.17 85.35 2.096 0.036 

Comp. Fix. Time O/T 21.32 s 20.06 s 18.15 s 19.87 s 2.411 0.016 

Duration Per Program 1105.62 s 950.13 s 899.92 s 862.44 s 3.443 0.001 

Saw & Marked the Bug 1.58 0.94 1.32 0.88 4.398 0.000 

Saw and Did Not Mark 0.88 0.92 1.02 0.96 -2.261 0.024 

Missed but Marked 0.00 0.00 0.04 0.22 -3.918 0.000 

 

The MSPs had significantly higher fixation count overall and on-target compared to the 

LSPs. This is contrary to previous research findings that highly proficient participants have lower 
fixation counts than the low proficiency participants. Several possible explanations could account 

for this result. First, since this was designed primarily as a pair programming task, the results could 

be different from an individual programming task where the participants work independently and are 

categorized as novices and experts. Second, this is a pair programming task where the participants 
were encouraged to collaborate and communicate with partners. Hence, it is possible that the 

fixations that occur while they were chatting might increase the fixation counts of the MSPs. Third, 

this is in line with prior research finding that experts acquaint themselves first with the program 
before trying to find the source of the bug, thus the higher fixation counts; while novices just focus 

on bug finding without comprehending first the overall program (Vessey, 1985).  

Fourth, it is possible that the MSPs tend to refixate on the words in the text before leaving 
the word, which are often caused by originally landing in a “bad” place in a word and that processing 

of the word is distributed over two or more fixations in (O’Regan & Lévy-Schoen, 1987). Fifth, the 

MSPs higher fixation count on-target is an indication that the errors are more easily noticed by the 

MSPs and they have more fixations on the bugs possibly to analyze how the bugs affect the program. 
Lastly, the LSPs lower fixation counts could mean that they are less engaged in the task, could just 

be waiting for their stronger partners to give the answer, and have less attention to detail not 

realizing that those are the bugs. Upon further inspection, it was found that the MSPs higher fixation 
count overall and on-target were only significant on hard programs. This implies that the MSPs, 

compared to LSPs, are encoding more information about the program particularly the hard ones. The 

MSPs higher fixation count is not a result of searching less efficiently as prior literature would 

suggest.   
Even if the fixation counts overall and on-target of the MSPs are higher than the LSPs, it 

seemed unexpected that the MSPs fixation rate overall was significantly slightly lower than the 
LSPs. From prior literature, this is an indication that information processing may not be effective.  

However, this may not be true because the MSPs were more successful in finding bugs. The MSPs 

had more fixations overall but the rate at which they fixate on the program elements was not high 
enough to deter them from doing enough searching to try to find all the bugs. The LSPs higher 

fixation rate overall and on-target could mean that they are just randomly sampling lines of codes, 

which implies trial and error in locating bugs. 

The MSPs had significantly lower fixation/saccade ratio than the LSPs. Since this metric 
can be used as an index of processing vs. searching (Goldberg & Kotval, 1999), it is possible that the 

MSPs have spent less time processing and more searching because the task required them to find as 

many bugs as possible within the time allotted. However, the MSPs had more fixations on-target 
(indicative of more processing) and had shorter saccade lengths (indicative of less searching). This 

could signify that the MSPs possibly employ a balance mix of processing and searching or there is a 
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greater diversity of gaze patterns among the MSPs that reflect their individual case-based knowledge 
(Robertson, 2016).  

The MSPs had significantly shorter average saccade lengths than the LSPs, which is 

contrary to previous findings that experts are more likely to make longer saccades than novices. One 

possible explanation is that this could be influenced by the way the text in the source code were 
formatted, particularly longer programs, to fit the entire screen (no scrolling needed) so the distances 

among bug locations do not require longer jumps. Since the lines were condensed to each other, this 

might have affected the saccade lengths of the MSPs. The LSPs longer average saccade lengths may 
be an indication that they might be searching randomly to attempt to locate the bugs. From prior 

literature, long saccades are less accurate and lead to ill-placed fixations (Rayner et al., 2012). 

The regressive saccades overall of the MSPs was significantly more frequent than the LSPs 
but the difference in their regressive saccades on-target was not significant. Prior research suggest 

that more incidences of regressive saccades is an indication of processing difficulty, confusion, or 

problems in understanding (Rayner et al., 2012). However, it could be argued that this is probably a 

form of “good confusion” since the MSPs found more bugs, and hence, were more productive. It is 
also possible that this could be a result of following the code execution order (e.g., tracing a for loop) 

or an indication that the MSPs read code less linearly than LSPs (Busjahn et al., 2015). Prior 

research also claim that many regressions are due to comprehension failures, that is, when readers 
encounter a word which they have misinterpreted, they often make regressions as soon as they 

encounter disambiguating information. These regressions typically are very short saccades and are 

probably due to oculomotor errors (Rayner et al., 2012). This could also explain the MSPs more 
frequent regressions overall.  

The MSPs complete fixation time on-target was significantly longer than the LSPs. 

However, this significance holds true only for the moderate and hard programs. This suggests that 

the MSPs could be taking their time processing and could be exhibiting a higher level of interest on 
each error found particularly when program difficulty increases. The difference on the duration per 

program between the MSPs and LSPs was also significant. The MSPs longer time spent in each 

program could be an indication that they are more engaged and are willing to take an extra step to 
locate all the bugs in the programs compared to the LSPs who are more likely to disengage from the 

task especially if the program complexity increases and tend to hastily start solving the problems 

without analyzing them. 

The MSPs had significantly more incidences where they fixated on the bugs and marked it, 
which matched our expectations. The difference, however, in comparison to the LSPs was not quite 

high, which could mean that there could be instances where the MSPs have told the LSPs the 

answers. It did not come as a surprise that the LSPs had significantly more occasions where they 
came across the errors but did not mark it. This means that the LSPs were not aware that those were 

the erroneous line(s) of code. Lastly, none of the MSPs were able to miss the bug(s) but marked it 

but the LSPs had few instances where they did not fixate on the bug(s) and yet they were able to 
mark it correctly, which implies that the MSPs had found the bug(s) and told the LSPs. 

 

5. Summary, Implication, and Future Work 

 
This paper investigated the individual gaze patterns of the more successful and less successful 
participants within programming pairs to help us understand what makes the other succeed in a 

bug-finding task. In summary, the MSPs are characterized as having higher fixation count overall 

and on-target but lower fixation rate overall, lower fixation/saccade ratio, shorter average saccade 
length, longer complete fixation time on-target, more frequent regressions overall, and longer 

duration per program. The LSPs, on the other hand, have the exact opposite characterizations. These 

are indications that programming pair participants aside from their usual assigned roles as “driver” 

and “navigator” can also be distinguished based on their individual gaze patterns.  
Programming is not an easy task and because of its challenging nature, programming 

educators strategize to make programming less difficult and one of these strategies is to implement 

pair programming. The significance of this study is to have a better understanding on the behaviors 
of the individuals within programming pairs through their gaze patterns while they trace and find 

bugs. Programming professors can learn from the behaviors of the more successful individuals 

within pairs.  
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Since these are just initial findings on the behaviors of the pair programming participants, 
the next step would be to conduct this experiment further to assess how these behaviors impact the 

performance of the individuals within pairs as well as their pair performance. We wish also to find 

out which program elements do MSPs and LSPs primarily inspect so that we can get a clearer picture 

on their respective cognitive processes. We will also look at the pairs’ behavior when they 
collaborate, assess the pairs’ collaboration based on the composition of the pairs, and examine their 

impact on the success of the pairs. The end goal of this research is to be able to create an explanatory 

model that could explain the dynamics that take place in a pair programming setup. 
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