
A Temporal Model of Learner Behaviors in 

OELEs using Process Mining 

Ramkumar RAJENDRAN
a
, Anabil MUNSHI

a
, Mona EMARA

b
 & Gautam BISWAS

a*
 

a
 Institute for Software Integrated Systems, Vanderbilt University, USA 

bEducational Psychology Dept., Faculty of Education, Damanhour University, Egypt 
*gautam.biswas@vanderbilt.edu

Abstract: Open-ended learning environments (OELEs) present learners with complex 

problems and a set of tools for solving these problems. Developing logging mechanisms that 

capture learners’ interactions with the system provide a wealth of trace data that can be 

employed for studying relations between their behaviors and performance. Such analyses 

provide a framework for making the OELE intelligent in that it can adapt its feedback to 
meet the needs of individual learners. In our previous research, we have developed learner 

modeling schemes that are based on sequential pattern mining (SPM) and Hidden Markov 

models (HMMs) to represent and track the temporal sequence of learners’ interactions with 

the OELE. We briefly discuss the pros and cons of these models, and then propose a process 

modeling approach to capture the temporal nature of learners’ behaviors. We apply the 

process modeling method to data collected from students working with the Betty’ Brain 

OELE, where students learn about scientific processes by building causal models. 

Keywords: Process Mining, Temporal Behavior Analysis, Learner Behavior, and Betty’s 
Brain  

1. Introduction

Open-ended Learning Environments (OELEs) present users with complex problems to solve along 
with a set of tools and resources that scaffold the problem-solving task (Biswas, Segedy, & 

Bunchongchit, 2016). Users can explore multiple solution approaches and assess their evolving 

solutions to determine their progress toward their learning and problem solving goals. OELEs 
typically include logging mechanisms that track users’ activities on the system as temporal 

sequences. Analytics and mining schemes can be applied to these activity sequences to assess, 

model, and interpret student learning behaviors and problem solving strategies (Basu, Biswas, & 
Kinnebrew, 2017; Kinnebrew, Segedy, & Biswas, 2017; Segedy, Kinnebrew, & Biswas, 2015).  

In our previous research, we have developed learner modeling schemes that are based on 

sequential pattern mining (SPM) (Kinnebrew & Biswas, 2012; Kinnebrew, et al., 2017) and Hidden 

Markov models (HMMs) (Biswas, et al., 2010) representations to track the temporal sequence of 
learners’ interactions with the OELE. We have also developed a Differential Sequence Mining 

(DSM) (Kinnebrew, Loretz & Biswas, 2013) to model less common but differentiating behavior 

patterns between two groups of students (e.g., high versus low performers or two groups subjected to 
different interventions). SPMs and DSMs provide a finer-grained but localized analysis of learning 

behaviors exhibited by students. Therefore, additional analyses are required for identifying overall 

learning behaviors that students exhibit when using an OELE. 

In contrast, HMM learning behavior models represent an aggregated probabilistic model of 
students’ overall learning behaviors captured in the form of a probabilistic automaton (Biswas, et al., 

2010). However, these aggregated are hard to interpret because (a) the hidden states have to be 

identified and labeled to characterize behaviors, and (b) transitions have associated probabilities, 
making the models nondeterministic, and, therefore, presenting likely behaviors as opposed to the 

actual behaviors students exhibit at any given time (Rabiner, 1989). While they do provide a useful 

representation for aggregating and comparing the learning behaviors between groups of students, 
they are difficult to apply for interpreting students’ current learning behaviors. 
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In this paper, we explore a a new methodology called process mining (Van der Aalst, 2011), 
to derive a holistic view of students’ learning behaviors from their action temporal sequences 

derived from their work in OELEs., in this paper, we explore We demonstrate the effectiveness of 

this model by applying a process mining algorithm to analyze data from a recent study with Betty’s 

Brain (Biswas, et al., 2005; Leelawong & Biswas, 2008), an OELE where students learn about 
scientific phenomena by building causal models. The results of this analysis provide a holistic 

temporal model of students’ overall problem solving behaviors. 

 

2. Background and Literature Review 

 
Process mining (PM) represents a method for deriving process models from temporal data, where 

the temporal data may represent a sequence of events, where each event may represent an action 

taken by the student when working in one or more learning episodes in an OELE (Reimann, 
Frerejean, Thompson, 2009; Winne, Nesbit, 2009). PM adopts an automata- or Petri net-like visual 

representation to represent the temporal model or process. When applying PM techniques to logged 

problem solving actions, researchers (e.g., Günther & Van Der Aalst, 2007, Schoor & Bannert, 
2012) assume that the present trace data— comprised of temporally ordered action sequences— can 

be mapped to one or more mental processes and the sequence of such processes can be interpreted as 

the students’ temporal problem solving model. 
In previous work, Bannert, Reimann, and Sonnenberg (2014) have applied process mining 

on qualitative data obtained through a think-aloud protocol to investigate learners’ self-regulated 

learning activities (such as analyzing and monitoring behaviors during problem solving) by taking 

into account their temporal ordering with respect to learning outcomes. Sedrakyan, De Weerdt, & 
Snoeck (2016) employed process mining algorithms to study patterns of novices modeling activities 

that were indicative of learning outcomes. The authors argued that identification of modeling 

patterns when teaching conceptual modeling demonstrated the applicability of process mining 
techniques in interpreting students’ cognitive learning processes, and this provided insights for 

generating process-oriented feedback instead of traditional outcome feedback. In a recent study, 

Juhaňák, Zounek, & Rohlíková (2017) used process mining to identify and differentiate between 
various types of non-standard student behaviors related to quiz-taking activities in a learning 

management system (LMS). 

A number of algorithms have been developed for generating process models. Some 

examples are Alpha miner (Van Der Aalst, Weijters, & Marusterref, 2004), Heuristic miner 
(Weijters, Van Der Aalst, & De Medeiros, 2006), and Fuzzy miner (Günther, Van Der Aalst, 2007). 

In this paper, we use the Fuzzy miner algorithm implemented in ProM (Günther & Van Der Aalst, 

2007), an open-source process mining tool (www.promtools.org), to visualize and explore the 
temporal differences in learning behavior sequences of high versus low performing students 

working on causal modeling tasks in the Betty’s Brain environment.While applying process mining 

models on real time data, that involves more events and transition between the events, often provides 

more complex models showing all details but without suitable abstraction for the analysis. In ProM, 
Fuzzy mining algorithm is used to develop a simplified process model on real time data. Here, we 

briefly describe the algorithm and the metrics used to develop the process model. A detailed 

description of the Fuzzy mining algorithm appears in Günther & Van Der Aalst (2007). The Fuzzy 
mining algorithm analyzes temporal sequence data to develop a process models that contain a set of 

nodes (events or actions) and edges (transition between actions/nodes). In order to develop a 

simplified and abstract process model, the algorithm uses two key metrics, significance, and 
correlation. Significance is measured for both nodes and edges, by the relative importance of their 

occurrence compared to the total occurrence. For example, the nodes or edges that occur more 

frequently are considered as more significant. Correlation is measured only for nodes, by analyzing 

how two events are closely related. For example, the two nodes that co-occur more frequently 
compared to other events is considered to be more correlated. Based on the values of the two metrics, 

significance and correlation, the process model is simplified (Günther and van der Aalst 2007) by 

applying three rules.  
1. highly significant nodes are preserved as is;  

2. less significant nodes that are highly correlated are aggregated and grouped into clusters; and  
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3. less significant nodes with low correlations to other nodes are dropped thus creating more 
abstract forms of the model.  

The abstraction level of the process model can be modified by changing three parameters: 

(1) node cutoff, (2) edge cutoff, and (3) utility ratio.  

Node cutoff is applied to remove the nodes whose significance is below the node cutoff 
threshold and the edge cutoff is applied to filter edges whose utility value is below the edge cutoff 

threshold. The utility value of an edge, which is calculated as the weighed sum of significance and 

correlation of an edge based on the parameter utility ratio(𝑢𝑟), which is measured as:  

 
𝑈𝑡𝑖𝑙𝑖𝑡𝑦 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑎𝑛 𝑒𝑑𝑔𝑒 =  𝑢𝑟 ∗  𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑐𝑒 𝑜𝑓 𝑒𝑑𝑔𝑒 +  (1 − 𝑢𝑟)  ∗  𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑒𝑑𝑔𝑒 

 
In addition to these parameters, in our work, to evaluate the derived models, we developed a 

metric called map correctness, which represents the number of log sequences that can be replayed 

accurately using the process model. It is measured as: 

 
𝑀𝑎𝑝 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑛𝑒𝑠𝑠 = 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠 𝑢𝑠𝑒𝑑 𝑖𝑛 𝑡ℎ𝑒 𝑚𝑜𝑑𝑒𝑙 ∗ 𝐿𝑜𝑔 𝑐𝑜𝑛𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒  

(𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑒𝑣𝑒𝑛𝑡𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑙𝑜𝑔 𝑐𝑜𝑢𝑙𝑑 𝑏𝑒 𝑟𝑒𝑝𝑙𝑎𝑦𝑒𝑑 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙𝑙𝑦) 

  

Our aim in this research is to maintain the threshold of 75% for the map correctness by 

manipulating the three parameters. In order to achieve our goal of Map correctness > 75%, the 

node threshold = 0 is fixed (to retain all the actions in the process model), and utility ratio (𝑢𝑟) =
0.5 (to provide balanced weight to both significance and correlation). Then, the edge cutoff value is 

varied to achieve our desired Map correctness value (> 75%). 
 

3. Learning Environment: Betty’s Brain 
 

The Betty’s Brain learning environment (Leelawong, & Biswas, 2008; Davis. et al., 2003) assigns 

learners the task of teaching a science topic (e.g., Climate change) to a teachable agent named Betty 

by constructing a visual causal map consisting of a set of entities connected by directed causal links. 
As students build their map, they can ask Betty questions, and Betty can answer them and explain 

her answers by tracing the causal links on the map. The students’ goal is to teach Betty a causal map 

that matches a hidden expert model of the topic.  
Students’ activities are categorized into three primary action types: (1) reading hypertext 

resources on the science topic (READ), (2) building the causal map (BUILD), and (3) assessing the 

correctness of the map (ASSESS). Students iterate among these action types until they have taught 

Betty a correct model or they run out of time. Figure 1 illustrates the Betty’s Brain BUILD (Causal 
Map) interface. As students read the hypertext resources, they extract causal relations between 

entities and construct the causal map to teach Betty. Students can assess their own understanding and 

success in teaching Betty by: 

 Querying Betty using a template for asking cause-effect questions. A “mentor” agent, Mr. 
Davis, helps grade Betty’s answers by comparing them against a hidden expert model. 

 Asking Betty to take a quiz, which helps them evaluate the current state of the map.  

 

In addition to READ, BUILD and ASSESS actions, students can also carry out additional actions: 

 Add to or view notes (NOTE; a ‘note’ is a text box in which students can collect or 
summarize information from the hypertext resources they deem relevant) 

 Ask causal questions (QUER) to Betty, and after she answers it, they can ask her to explain 

her answer (QUER_EXPL) 

 After taking the quiz (QUIZTAKEN) or after looking at quizzes that were administered 

earlier (QUIZVIEW), students can also ask Betty to explain (EXPL) her answer to a 

specific quiz question. She does this by highlighting the sequence of links used to answer 
the question as well as a step by step solution of how the answer was derived.  

 

Students’ actions along with the context in which each action was performed are recorded in log 
files. 
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Figure 1. Betty’s Brain system showing Causal Map Interface 

 
Student performance in the Betty’s Brain environment is measured by their current “map 

score”, which is computed as the difference between the number of correct and incorrect links 

present in the student’s map at any point of time. Students’ learning behaviors in Betty’s Brain are 
derived from a cognitive/metacognitive task model (Kinnebrew, Segedy, & Biswas, 2017). Their 

interactions with the system are mapped to particular skills (for example, reading hypertext 

resources is mapped to the information acquisition skill), which are then interpreted in terms of the 
overall learning objectives. A sequential combination of primitive skills, performed in a context, is 

interpreted as a problem solving strategy. Researchers have employed a combination of analytics 

methods (Kinnebrew, Segedy, & Biswas, 2017) and exploratory sequence mining techniques for 

detecting and characterizing students’ metacognitive processes in Betty’s Brain environment. 
Betty’s Brain has been shown to significantly improve student learning, as measured by gains 

observed from pre- to post-tests. (Kinnebrew, et al., 2017, Segedy, et al., 2015). 

For analyzing learners’ behaviors, their logged actions are further classified based on time 
taken to perform each action and/or its impact on the current map score. For example, READ actions 

are characterized as READ-SHRT (3 seconds or less spent on reading a page) and READ-LONG 

(more than 3 seconds spent on a page). A linkedit (adding, modifying or deleting a causal link in the 
Causal Map Interface) action that increases the map score is logged with the suffix –EFF (for 

‘effective’), and a linkedit action that decreases the map score is logged with the suffix –INEFF (for 

‘ineffective’). A second qualifier for link edit actions is the suffix –SUP/UNSUP, which indicates 

that editing action performed is supported by information acquired from a previous READ or QUIZ 
action that occurred within the last 5 minutes (Segedy, et al., 2015). The descriptions of the actions 

used to develop the process model described in this paper are summarized in Table 1. 

 

4. Method 
 

4.1 Study Design 
 

The data analyzed in this paper was obtained from a recent classroom study with 87 sixth-grade 

students from four classrooms in an urban public school in southeastern United States. The study 
lasted for 7 days. On day 1, students completed a paper-administered pre-test. On day 2, they were 

introduced to reasoning with causal maps and given sufficient hands-on training to familiarize 

themselves with the Betty’s Brain system. Over the next four days (days 3-6), the students worked 
on building a causal model of climate change in the Betty’s Brain environment. On the last day, they 

completed a post-test that was identical to the pre-test. The pre- and post-tests tested the students’ 

knowledge on the science domain concepts and understanding of causal relations using a 

combination of multiple choice (𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑠𝑐𝑜𝑟𝑒 = 7) and short-answer (𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑠𝑐𝑜𝑟𝑒 = 9) 

questions.  
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Table 1 

List of Betty’s Brain Actions with descriptions used for deriving the Process Model 

Primary Action 

Category 
Actions Description 

 

READ 
READ-SHRT Reading resources in science page for < 3 seconds 
READ-LONG Reading resources in science page for > 3 seconds 

 

 

 
 

 

BUILD 

LINKEDIT-EFF-SUP Add or edit a causal link that is correct and 

supported by previous READ or QUIZ actions 
LINKEDIT-INEFF-SUP Add or edit a causal link that is incorrect and 

supported by previous READ or QUIZ actions 
LINKEDIT-EFF-UNSUP Add or edit a causal link that is correct but not 

supported by previous READ or QUIZ actions 
LINKEDIT-INEFF-UNSUP Add or edit a causal link that is incorrect and not 

supported by previous READ or QUIZ actions 
 

 

ASSESS 

QUIZTAKEN Betty takes a quiz when asked to do so, 
QUIZVIEW Viewing results of quizzes (either the current one 

or those that were taken earlier) 
EXPL Asking Betty to explain her answer to a quiz 

question, and viewing the highlighted map that 

she generates 

  NOTE Adding or viewing notes in the note taking 
interface 

 

4.2 Data Preprocessing and Process Mining Analysis 
 

For the purpose of our analyses, we grouped all the students (𝑛 = 87) into high performers (HI) and 

low performers (LO) based on the median value (11) of the overall map scores (which is a measure 

of their in-system performance in Betty’s Brain). Students with a map score greater than 13 

(𝑚𝑒𝑑𝑖𝑎𝑛 𝑣𝑎𝑙𝑢𝑒 +  2)  were labeled “HI” (𝑛 = 41) . The average map score for this group 

was 20.58 (𝑠𝑑 =  4.15). and those with a map score less than 9 (𝑚𝑒𝑑𝑖𝑎𝑛 𝑣𝑎𝑙𝑢𝑒 –  2) were labeled 

“LO” (𝑛 = 39) . The average map score for this group was 4.03 (𝑠𝑑 =  2.2). Data for students 

(𝑛 = 7)in the median range (9,13) was discarded to maintain sufficient distinction between the two 

groups. The maximum map score students can obtain in the climate change unit is 25.  

Students’ activity traces logged in the Betty’s Brain system was preprocessed to extract the 

time-stamped sequence of student actions. To reduce the complexity of our process models, we 

randomly sampled 10 HI (average 𝑚𝑎𝑝 𝑠𝑐𝑜𝑟𝑒 𝑤𝑎𝑠 19.3 (𝑠𝑑 =  4.8) ) and 10 LO (average 

𝑚𝑎𝑝 𝑠𝑐𝑜𝑟𝑒 𝑤𝑎𝑠 4.45 (𝑠𝑑 =  2.02)  students. The action sequences of our chosen HI and LO 

students served as inputs to create a process mining model of actions using the ProM tool. 
 

5. Results 
 
The action frequencies for the high and low students are listed in Table 2. Frequencies are presented 

as percentages computed in relation to the total number of actions performed by a group. Overall, 

students in the HI group performed more actions (4276) compared to the students in the LO group 
(2324). The HI group students performed more EXPL actions (26% of the total) related to checking 

their map, as compared to students in the LO group (8.1%). On the other hand, the LO students has a 

higher frequency of READ-SHRT actions (23.6%) as compared to HI group (14.7%). Similarly, the 

LO group performed more READ-SHRT actions (23.6%) as compared to READ-LONG actions 
(16.7%), and also more ineffective (incorrect) causal link edits (LINKEDIT-INEFF-UNSUP - 9.3% 

+ LINKEDIT-INEFF-SUP - 2.8%) compared to effective (correct) causal link edits 

(LINKEDIT-EFF-UNSUP - 5.6% + LINKEDIT-EFF-SUP - 4.1%). The students in the HI group 
performed more READ-LONG actions compared to READ-SHRT actions, and more effective link 

edits compared to ineffective link edits. An overall comparison of the values in Table 2, shows that 

the students in the HI group not only performed more actions compared to the students in LO group, 
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but they also performed more meaningful and effective actions such as READ-LONG, EXPL 
(assessing their performance) and effective causal link edits. 

 

Table 2 

Number of Occurences and Relative frequency of Betty’s Brain Actions of 10 High (HI) and 10 Low 

(LO) performing Students  

  HI LO 

Actions Number of 

Occurrence 
Relative 

Frequency (%)  
Number of 

Occurrence 
Relative 

Frequency (%)  
All actions 4276   2324   

EXPL 1112 26.01% 187 8.05% 
READ-SHRT 627 14.66% 548 23.58% 
QUIZVIEW 545 12.75% 418 17.99% 
READ-LONG 520 12.16% 387 16.65% 
QUIZTAKEN 460 10.76% 169 7.27% 
LINKEDIT-EFF-SUP 367 8.58% 94 4.04% 
LINKEDIT-INEFF-UNSUP 220 5.14% 217 9.34% 
LINKEDIT-EFF-UNSUP 206 4.82% 130 5.59% 
LINKEDIT-INEFF-SUP 158 3.70% 66 2.84% 
NOTE 61 1.43% 108 4.65% 
 

 
a. Process Model of Learners in Low (LO) group 
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b. Process Model of Learners in High (HI) group 

Figure 2: Process Model of Learners’ Behavior 

The process models of learning behaviors generated by the Fuzzy mining algorithm for the 
low (LO) and high (HI) performing students are shown in Figures 2(a) and 2(b), respectively. In 

order to retain 75% accuracy in matching the sequences from the log file, we converged on the 

following parameter values: 𝑛𝑜𝑑𝑒 𝑐𝑢𝑡𝑜𝑓𝑓 =  0 (keep all action nodes) and 𝑢𝑡𝑖𝑙𝑖𝑡𝑦 𝑟𝑎𝑡𝑖𝑜 =  0.5 

(only retain links whose 𝑢𝑡𝑖𝑙𝑖𝑡𝑦 𝑟𝑎𝑡𝑖𝑜 >  0.5). In the PM in Figure 2, the rectangular nodes 
represent actions. The significance metric is represented by the numerical value (between 0 and 1) 

within each action node. The thickness and darkness of the edges indicate the significance and 

correlation values associated with the edges, respectively.  
The process models derived include the 10 types of actions discussed previously in Tables 1 

and 2. Comparing the two models in Figures 2(a) and 2(b) shows some interesting commonalities as 

well as differences in the learning behaviors of the LO and HI groups. First, we observe a significant 

number of common processes in both models. For example, both groups show a strong loop between 
unsupported effective and ineffective causal link edit actions. READ-LONG actions are followed by 

supported link edit actions. There exists strong connection from the QUIZTAKEN and QUIZVIEW 

actions to the EXPL action in both models.  
However, the difference in the two models (LO versus HI) provides more interesting 

comparisons between the respective learning behaviors of the two groups. . This helps us understand 

why LO group students were not as successful as the HI group in their model building tasks. First, 

for the LO group (Figure 2a); there is a strong cyclical loop between READ-SHRT and 
READ-LONG actions. In contrast, no such loop occurs in the HI group model (Figure 2b). The HI 
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group students, while showing a strong connection from READ-SHRT to 

READ-LONG(𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑐𝑒 =  0.4, 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 =  0.65), do not display a connection in the 

reverse direction (READ-LONG to READ-SHRT). Instead, the only strong outward connection 

from READ-LONG for HI group is to the LINKEDIT-EFF-SUP node. This suggests that the HI 

students seemed to be more effective in translating what they read into finding and adding correct 
links to their causal map models. In contrast, the LO group was unable to find useful information to 

support their map building actions. Instead they cycled through long and short reading instances. 

The short read instances may correspond to looking through the topic of contents or just glancing at 
page headers when searching for relevant science content. The fact that there were many instances of 

such READ-SHRT action clearly indicates that the LO group was often unsuccessful in translating 

these search instances into successful map editing actions. 
When we look more closely at the BUILD actions performed by the HI and LO groups, 

Figure 2a, shows that the LINKEDIT-EFF-SUP action has strong connections to other BUILD 

actions (such as LINKEDIT-EFF-UNSUP, LINKEDIT-INEFF-SUP, and 

LINKEDIT-INEFF-UNSUP), but no connection to any ASSESS or READ type of action. This may 
imply that the LO group tried to add multiple links to their map in sequence, but made a lot of errors 

in the process. For the HI group (Figure 2b), we observe that the LINKEDIT-EFF-SUP action is 

connected to QUIZTAKEN and READ-SHRT actions. This suggests that the HI students, after 
adding a correct causal link to their map, tried to validate the correctness of the updated causal map 

using the quiz as an assessment tool, or by going back to the resource pages and doing a quick read to 

confirm the correctness of their additions. 

Next, checking the solution assessment (ASSESS) actions for the two groups again shows 
contrasting behaviors. Figure 2a shows that LO students, after looking at the explanations for quiz 

answers, transition to a number of different actions, such as LINKEDIT-INEFF-UNSUP (unable to 

interpret the quiz results), READ-LONG, READ-SHRT, and NOTE taking. On the other hand, HI 
students (in Figure 2b), after looking at the explanations to quiz answers (EXPL-G), consistently 

transition to READ-LONG, which is followed by a correct link edit (LINKEDIT-EFF-SUP). This 

clearly indicates a situation, where LO students may be able to especially benefit from in-time 
scaffolding. The ability to interpret and use quiz results is an essential debugging task that students 

need to employ to become efficient learners. 

The differences in learners’ behaviors inferred from process model give us a lot of useful 

information that can be utilized to provide personalized scaffolds for productive learning of low 
(LO) and high (HI) performing groups of students. For example, scaffolding students in the HI group 

when they perform ineffective link edits may help them to get past their “unsupported effective to 

ineffective linkedit” loops. Similarly, for students in LO group, providing feedback after effective 
supported link edits may help them to assess their map using the QUIZ action or go back to do 

additional READs to ensure that they find the correct information for building their maps. Also, 

suggesting the students in LO group perform a READ-LONG action after EXPL action might help 
them to convert their knowledge gained by reading to effective link edits. 

 

6. Discussion and Conclusion 

 
In this work, we presented a process modeling approach for analyzing learning behaviors from 

students’ interaction with an OELE. We used the Fuzzy miner algorithm in process model to 
contrast the processes of high and low performers. Results from a recent classroom study with 

Betty’s Brain show that this modeling approach is effective in characterizing learners who show 

different levels of performance.  
From the process model, we discovered that high performing students not only execute more 

actions, but their actions are also supported (i.e., linked to information generated from previous 

actions) and effective (they help the students accomplish the goal of building a correct map). Their 

pre- to post-test scores (not reported in this paper) also show that students who perform more 
effective actions in the system learn their science content better. In order to contrast the results 

obtained from PM approach to the results of SPM algorithm, we applied the SPM algorithm to the 

actions sequences obtained from students in both HI and LO groups. The SPM results provide the 
list of most frequent actions, self-loop between actions (for example EXPL → EXPL → EXPL), and 

most frequent patterns (for example READ-LONG → READ-SHRT) for both groups. Overall, the 
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SPM algorithm and its variation Differential sequence mining (DSM), provides the localized 
behavior of students such as frequent processes (patterns), the significance of each action and 

differential behavior patterns in HI vs LO groups. However, the process model provides both the 

information on frequent patterns and also the holistic view of students’ action sequences to represent 

their learning behavior. In other words, the PM model shows how students combine different 
behavior patterns over time, which is not readily available from the SPM results. 

In future work, we propose to extend the current research along three dimensions. First, we 

propose to reconstruct the process model using more fine-grained action sequences (for example 
NOTETAKEN and NOTEVIEW instead of just the NOTE action) to analyze the learner’s behavior 

in finer detail. Second, we propose to develop feedback algorithms based on the process model 

developed in this paper, to scaffold LO and HI performing learners and measure its impact on their 
learning. Third, we intend to integrate SPM and PM to study the learning transition between most 

frequent patterns for scaffolding. We propose to achieve this by developing process model on most 

frequent patterns exhibited by students. 
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