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Abstract: Eye tracking data, particularly scanpath, provides valuable insights about code 

reading patterns which could describe actual comprehension strategies used. However, 

aggregating multiple scanpaths into one representative path is challenging since individual 

scanpaths tend to be different and are highly individualistic. The differences may affect the 

identification of a representative path which could decrease its similarity to individual 

scanpaths. Thus, we aim to identify a trending scanpath using Scanpath Trend Analysis 

(STA) with a tolerance to reveal common code reading patterns of high and low performing 

students while finding bugs in a static source code. Results show that variance exists in the 

scanpaths of high performing students which suggests that they follow varied code reading 

patterns while low performing students follow similar code reading patterns. Further, high 

performing students read code in a logical manner and a somewhat linear code reading 

pattern along with chunking of program code was employed which makes it possible to 

perceive the program better and hence, error regions are fixated. In contrast, low performing 

students jump directly to certain statements without following program’s logic. This study 

addresses the challenge of identifying common code reading patterns that could help us 

determine effective strategies to be explicitly taught to students and develop learning 

materials to help improve their code reading and code comprehension skills. 

Keywords: Eye tracking, code reading, code reading patterns, scanpath analysis, Scanpath 

Trend Analysis, tolerance level parameter. 

1. Introduction

One of the interesting approaches to study how programmers perform comprehension tasks, is the 

use of eye tracker. Eye tracking technology is used to record eye movements while reading source 

code which shows the focus of attention and how focus travels within the stimuli (Melo, et al., 2017). 

Analyzing eye tracking data, particularly scanpath which is defined as a sequence of consecutive 

fixations and saccades (Goldberg and Helfman, 2010), provides valuable insights about code reading 

patterns which could help describe actual comprehension strategies used (Bednarik, et al,. 2016).  

Studies using eye tracking technology to uncover the cognitive processes of programmers 

while performing code reading and code comprehension tasks is becoming widespread (Busjhan, et 

al., 2015; Jbara and Feitelson, 2017; Lin, et al, 2016). Understanding how programmers read and 

comprehend source code could provide information on how programmers think while performing 

the task as well as insights on how we can improve the overall learning process by improving 

learning materials based on eye tracking data (Bednarik, et al., 2014). Further, exploring the 

strategies used by experts while performing comprehension tasks particularly code reading, would 

allow us to uncover effective strategies that could be explicitly taught to improve code reading and 

code comprehension skills of students (Bednarik, et al., 2016). However, finding common patterns 

in the visual strategies used by experts is challenging, since their individual scanpaths tend to be 

different from each other (Eraslan, et al., 2017) and are highly individualistic (Jbara and Feitleson, 

2017). The differences may affect the identification of the common scanpath of a group which could 

decrease its similarity to individual scanpaths. To identify an appropriate technique for a sequential 
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analysis of eye tracking scanpaths to generate a common scanpath that closely resembles the 

individual scanpath to describe common code reading patterns, we review existing common 

scanpath identification techniques. Dotplots algorithm (Goldberg and Helfman, 2010) and eMINE 

algorithm (Eraslan, et al., 2016) use hierarchical clustering to generate a common scanpath. 

However, Dotplots uses an aggregate strategy that is entirely dependent on the sequential matches 

found between the pair of scanpaths which generates uncertain result if there are only few matches 

found in the pair of scanpaths. eMINE on the other hand, is likely to produce short common scanpath 

which is not useful for describing reading patterns. Scanpath Trend Analysis (STA) algorithm 

(Eraslan, et al., 2016) uses a multi-pass approach consists of three main stages to generate a common 

scanpath. The generated common scanpath will be based from the minimum total number of 

fixations and minimum total durations, and their positions in the individual scanpaths. STA 

generated common scanpath which is more similar to individual scanpaths compared to Dotplots 

and eMINE. However, STA did not consider the variance between individual scanpaths in 

generating common scanpath which could negatively affect the identification of a common scanpath. 

To address this problem, a parameter called tolerance level was added to STA (Eraslan, et al., 2017). 

This parameter is used in the second stage of the algorithm which allows researchers to adjust the 

tolerance level in the stage of identifying trending AOIs. Therefore, STA with a tolerance can be 

used to identify a common scanpath which tolerates variances between scanpaths of a group. Thus, 

we aim to identify a common scanpath using STA with a tolerance to reveal common code reading 

patterns of high and low performing students while finding bugs in a static source code. 

 Previous studies were conducted to determine programmer’s pattern of eye movements 

using sequential analysis of scanpaths to understand their cognitive processes. We review these 

studies to gain information about the code reading patterns found using scanpath analysis, the task 

and programming language used to investigate reading patterns, and method used to determine 

reading patterns of experts and novices. The differences between the reading patterns of novices and 

experts were examined by Busjahn, et al. (2015) and (Lin, et al., 2016) which is similar to our study 

since we aim to identify common code reading patterns of high and low performing students, while 

the studies of Uwano, et al. (2006) and Jbara and Feitelson (2017) describes the scanpaths of the 

individual subjects which is in contrast with our study. Our study is different in terms of the task 

used in (Busjahn, et al., 2015; Jbara and Feitleson, 2017) and is more similar in (Uwano, et al., 2006; 

Lin, et al., 2016). Our study investigates the code reading patterns of students while finding bugs in 

a static source code written in Java. Furthermore, the method used in our study is different from the 

methods used by previous studies. As of this writing, no studies have been conducted to describe 

code reading patterns while finding bugs using STA algorithm with a tolerance. This algorithm was 

applied to eye tracking data while subjects are browsing and searching information on web pages to 

find their trending scanpath (Eraslan, et al., 2017) which is different in the context of this study. 
 

 

2. Methods 
 

This paper is an analysis of a larger eye tracking study on programmer tracing and debugging skills 

as well as development of higher education’s capacity to conduct eye tracking research. The methods 

discussed here are also discussed in the study of (Villamor and Rodrigo, 2017). Eye movements data 

were collected from 44 students from three private schools in the Philippines. We identified two 

types of participant groupings based on their pre-test scores. The first group consists of 25 students 

with High Scores while the other group consists of 19 students with Low scores. The groupings were 

used to identify trending scanpath of high and low performing groups. 

 There were 12 short Java programs with defects used in the experiment. Out of the 12 short 

programs, 9 of them had 3 defects while 3 had 1 defect each. For this study, we selected one program 

with 3 defects out of the 12 programs. The selected program code used in this analysis is a program 

code that display all prime numbers from a set of input.  The program contains conditional statements 

and repetition structures with 33 lines of codes. OGAMA tool was used to identify the coordinates 

of the Areas of Interests (AOIs) which were defined per line of codes to determine which lines are 

frequently fixated and to identify the vertical code reading patterns employed by the participants. 
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 To identify the common scanpath of each group, we used Scanpath Trend Analysis (STA) 

with a tolerance (Eraslan, 2017). The STA algorithm with a tolerance consists of three main stages. 

The first stage is the preparation of the individual scanpaths. Each fixation points in the individual 

scanpath is matched to the identified AOIs of the program code. The individual scanpaths in this 

stage are represented as a series of AOIs with fixation durations. The second stage identifies the 

trending AOIs in the scanpaths. The trending AOIs were identified using their number of fixations 

and their fixation durations. The final stage in the algorithm is the identification of the common 

scanpath using the trending AOIs based on their positions in the individual scanpaths. The scanpaths 

are abstracted by combining the same AOI instances and then computes the priority value of each 

AOI instance in each individual scanpath. When all the priority values are, the total priority value 

for each AOI instance is calculated. The algorithm then positions the instances into the common 

scanpath based on their total priority values from highest to lowest. Once the trending visual element 

instances are positioned in the common scanpath, their numbers are eliminated (e.g. E1 → E) and 

consecutive repetitions are removed (e.g. JEJJ → JEJ). Thus, the common scanpath is represented 

in terms of the AOIs. For a detailed discussion of the algorithm, see (Eraslan, et al., 2017). 

To determine how similar the common scanpath to the individual scanpaths, we use String-

edit algorithm (Duchowski, et al., 2010) to calculate the distance between the common scanpath and 

individual scanpaths of each group of students.  The String-edit distance is then used to calculate the 

similarity between the two scanpaths by using the equation S = 100 * (1 - (D/L)) where D refers to 

the String-edit distance and L is the length of the longer scanpath. In this study, each group of high 

and low performing students from each schools will have three common scanpaths based on the 

three tolerance level parameters used. Statistical tests were used to determine which of the three 

parameters will be selected to generate a common scanpath for each group of students to reveal their 

common code reading patterns. To test the difference of the tolerance level parameters for each 

group based on the similarity scores, a repeated measures test was used. The same test was used to 

determine the difference between the similarity scores of the common and individual scanpaths. 

 

 

3. Results and Discussion 
 

The stages of STA algorithm with a tolerance was employed to generate three common scanpaths 

for each group of high and low performing students from all schools. To identify the tolerance level 

parameters for each group, we first consider all individual scanpaths and then adjust the parameter 

levels by decreasing it by 5. We repeatedly decrease the current parameter level by 5 if no changes 

in the identified trending AOI instances were observed. We identified three parameters for each 

group which ranges from 100% to 60% to check for differences on the resulting common scanpaths. 

After identifying the three common scanpaths for each group with the chosen tolerance level 

parameters, the similarity scores were calculated as described in Section 2. To determine a common 

scanpath that is more similar to the individual scanpaths, the median similarity score of the common 

scanpath should be equal to or greater than the median similarity scores between the individual 

scanpaths. Statistical tests were conducted to help us decide which common scanpath will be selected 

to describe the common code reading patterns of the groups. Repeated measures ANOVA was used 

to determine the difference of the tolerance level parameters for each group of students based on the 

similarity scores. The same test was also used to determine the difference between the similarity 

scores of the common scanpath and the similarity scores of the individual scanpaths. 

 

 4.1. Common Scanpath of High Performing Students 
 

The result of the repeated measures ANOVA with Greenhouse-Geisser correction determined that 

there was no significant difference between the tolerance levels for School A (F(1.251, 25.028) = 

2.525, p = .731), there was a significant difference for School B (F(1.888, 18.882) = 7.496, p = .005), 

and there was a highly significant difference for School C (F(1.995, 27.934) = 12.234, p = .000). 

With regards to the test for difference between the similarity scores of the common scanpath to the 

individual scanpaths, the results reveal that there was a highly significant difference for School A (F 

(1, 20) = 12.527, p = .002), there was no significant difference for School B (F (1, 10) = .543, p = 

.478), and there was also no significant difference for School C (F(1, 14) = .859, p = .370).  
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The result of the tests for School A reveals that the similarity scores obtained across 

tolerance levels would be the same and that the overall mean of the common scanpath is greater than 

that of the individual scanpaths. Thus, we selected the common scanpath with 100% tolerance level 

to include all individual scanpaths and since greater similarity scores of the common scanpath is 

observed. The result of the tests of the three tolerance levels for School B and School C suggest that 

choosing one from the tolerance levels would have significant effect in the generation of the common 

scanpath. While no significant difference was observed from the similarity scores of the common 

and individual groups, we checked which of the tolerance levels have greater similarity scores in the 

common scanpath group. The common scanpath with a tolerance level of 80% have the highest 

similarity score among the three tolerance levels of School B. Therefore, we assumed that there is 

variance between the individual scanpaths. To verify, we checked the total fixation durations and 

the total number of fixations of the 6 students. We found that one student spent 149 seconds which 

is more than twice the time spent by the other 5 students (56, 72, 71, 43, 72). This observation is the 

same for the number of fixations. Therefore, we selected the common scanpath with 80% tolerance 

level for School B. For School C, we selected the trending scanpath with 100% tolerance level since 

it has the highest similarity score. 

The selected common scanpaths were clustered using the priority values of the AOI 

instances of the individual scanpaths to generate the common scanpath. A graph was generated to 

show the sequence of eye movements of high performing students and is presented in Figure 1.a. 

The size of the blue circles represents the attention given for the AOI of the line number and numbers 

inside represents the common scanpath sequence of gazes for that line. The directional arrows 

represent the sequence origin and destination. The first 10 fixations of the common scanpath of high 

performing students concentrate on lines 6-13. Line 13 consists of declaration of array s of type 

int and instantiation of value from n which was assigned a value after accepting an input from the 

user located on line 12 and input was made possible by the statement located on line 9 and the 

variable n of type int was declared on line 10. We can say that these sequence of eye movements 

reflect logical thinking process. We also observe regression to line 13 after line 12 was looked at 

which can be associated to the retrace declaration pattern (Uwano, et al., 2006) or jumping back to 

verify details pattern (Jbara and Feitelson, 2017). Fixations 11-20 reflect a close examination of 

three new statements located on lines 15, 16 and 19. We note that at this point, two fixations occurred 

on line 15 where the first error was located. The next set of fixations (21-30) also reflect 

understanding of three new statements located in lines 20, 23 and 24 which are located in the body 

of the second and third for loop. Line 15 received two additional fixations which mean that students 

suspect that this line has an error. The last set of fixations (31-36) concentrates on lines 22, 24 and 

29. Half of the six fixations are located on line 22 which means that this line is suspected to contain 

an error. The only fixation on line 29 was the second to the last fixation in the scanpath. To 

summarize, the generated trending scanpath exhibits code reading patterns of experts or high 

performing students. The study of Lin, et al., (2016) found that high performing students read code 

in a more logical manner compared to low performing students. This is reflected on the first set of 

fixations. A somewhat linear code reading pattern was observed and is used along with chunking or 

slicing of code. This pattern can be associated to the nature of the task which is finding bugs in the 

program code. We also note that the scanpath was able to scan the entire program code and passed 

through all the lines where errors are located.  

 

4.2. Common Scanpath of Low Performing Students 

 

The result of the tests for difference between the tolerance levels based on the similarity scores of 

the low performing students reveal that there was no significant difference between the tolerance 

levels for all groups: (F(1.722, 13.775) = 3.275 p = .074) for School A, (F(1.926, 26.964) = 1.790, 

p = .187) for School B, and (F(1.228, 12.275) = .629, p = .475) for School C. For the test for 

difference between the similarity scores of the common scanpath group to the individual group, 

result of repeated measures ANOVA with Greenhouse-Geisser correction determined that there was 

a significant difference for School A (F(1, 8) = 11.150, p = .010), there was also a significant 

difference for School B (F(1, 14) = 11.243, p = .005), while there was no significant difference for 

School C (F(1, 10) = .4.863, p = .052). These results suggest that the variance between the scanpaths 
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is negligible since the results are almost the same across all schools with a slight difference in the 

result of School C since the p-value is slightly greater than .05. For all groups, the similarity scores 

of the common scanpath group are higher than the individual group. Therefore, we selected the 

common scanpath generated with 100% tolerance level which includes all scanpaths of the group.  

The selected common scanpaths were clustered using the priority values of the AOI 

instances of the individual scanpaths to generate the common scanpath. Figure 1.b. shows the eye 

movement patterns of low performing students. Their first ten fixations covers line 6 to 15. We can 

say that based from these sequence of fixations, linear pattern was observed along with regressions 

or look back movements to lines 13 and 15. Students then looked at line 16 then back to line 15 then 

line 16 again then line 19 then back to line 13. After that, they looked at line 16 then 13 then back 

to 16 then 23 then line 6.  The last set of fixations is similar to the non-linear reading pattern observed 

from the previous ten fixations. The code reading pattern exhibited is in line with the finding of the 

study of Lin, et al. (2016) that low performing students often jump directly to certain statements to 

find bugs without following the program’s logic. Furthermore, compared to reading natural language 

text, novices read source code in a less linear manner (Busjahn, et al., 2015) which is observed in 

the scanpath of low performing students.  
 

 
                                        (a)                  (b) 

Figure 1. (a) Common Scanpath of High Performing Students and (b) Common Scanpath of Low 

Performing Students 
 

 

4. Conclusion and Future Works 
 

Individual scanpaths tend to be different from each other and are highly individualistic and may 

affect the identification of a representative path of a group. Thus, this study addresses the challenge 

of determining a common scanpath that is more similar to individual scanpaths using STA with 

tolerance to reveal common code reading patterns of high and low performing students while finding 

bugs in a static source code. This algorithm gives us the ability to find an appropriate tolerance level 

for achieving the highest similarity of the common scanpath to individual scanpaths. Results show 

that by adjusting the tolerance level parameter in the stage of identifying trending AOIs, we were 

able to generate a common scanpath that is more similar to the individual scanpaths which could be 

used to generalize the code reading patterns of high and low performing students while finding bugs 

in a static source code. We also found that variance exists in the scanpaths of high performing 

students which suggests that they follow varied code reading patterns while low performing students 

follow similar code reading patterns. This also confirmed that high performing students read code 

in a logical manner while low performing students jump directly to certain statements to find bugs. 

Gaining insights into the code reading patterns of students would allow us to identify effective 

strategies that could be explicitly taught to students and develop learning materials to improve their 
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code reading and code comprehension skills. However, the code reading patterns found in this study 

are limited to the program code used in the analysis. Future work will look at the reading patterns of 

the same group of students on different program codes with various code complexity and relating 

the patterns to the type of programs to be able to validate and generalize the result of this study.  
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