
ctGameStudio – A Game-Based

Learning Environment

to Foster Computational Thinking

Sören WERNEBURG*, Sven MANSKE & H. Ulrich HOPPE

COLLIDE Research Group, University Duisburg-Essen, Germany

*werneburg@collide.info

Abstract: This paper presents a game-based learning environment supporting the

acquisition of computational thinking skills. The game environment offers two types of

usage: a guided progression through levels and an open stage. Seven levels of guided

learning were evaluated in a study with 40 students to measure their learning progress. We

introduce five features to describe the students’ learning behavior and map the performance

parameters to computational thinking competences. In our analysis, we distinguish different

basic actions and compare the usage and distribution of these actions over time and between

groups of learners with different achievement levels. This allows for identifying specific

challenges related the interactive acquisition of CT skills.

Keywords: Computational Thinking, Game-Based Learning, Abstractions, Learning

Analytics

1. Introduction

During the last decade, the term Computational Thinking (CT) emerged from the field of computer

science education. “The essence of Computational Thinking lies in the creation of ‘logical artifacts’

that externalize and reify human ideas in a form that can be interpreted and ‘run’ on computers”

(Hoppe & Werneburg, 2018). These logical artifacts can be programming solutions that learners

create in order to be executed on a computer and to produce solutions to a specific problem. Wing

(2014) emphasized the importance of abstraction in this context: “the most important and high-level

thought process in computational thinking is the abstraction process. Abstraction is used in defining

patterns, generalizing from specific instances, and parameterization.”

Although the term Computational Thinking has gained popularity more recently, Papert

(1996) described the idea already in conjunction with turtle geometry in Logo. In the 1970s, Logo

has been designed as an easy-to-learn educational programming language fostering self-directed and

explorative learning in various fields of mathematics, science, language and arts. One of the key

elements in Logo was turtle graphics that enables learners to steer a virtual turtle to draw shapes and

explore properties of geometry. Logo included functional programming elements (inherited from

LISP), provided natural and easy access to recursion but also offered simple iterative constructs.

The current practice of CT education is dominated by block-based visually oriented

programming languages. Accordingly, much effort has been invested into the development of

innovative approaches and tools for introductory programming following this principle. Such tools

support the learners in avoiding syntactical errors when writing their programming code. Scratch

(Resnick et al., 2009) is one of the most prominent examples of this approach. It is rooted in the

Logo history and philosophy following the principles of “low threshold and no ceiling”. Scratch

contains basic elements of game engines allowing learners to create their own interactive

microworlds. However, such activities primarily involve aspects of game design and do not

necessarily foster CT skills in a systematic way. While Dr. Scratch (Moreno-León, Robles, &

Román-Gonzáles, 2015) facilitates the assessment of CT skills for programming solutions in the

Scratch environment, it does not support guidance for an incremental learning progression towards

becoming a “Computational Thinker”.

543

Yang, J. C. et al. (Eds.) (2018). Proceedings of the 26th International Conference on Computers
in Education. Philippines: Asia-Pacific Society for Computers in Education

 In this paper, we present an approach to introductory game-oriented programming by using

a virtual robot, which can be programmed by the learners with basic operations taken from turtle

geometry. ctGameStudio provides learners a visual block-based programming editor that is

connected to a microworld hosting the virtual robot. We support the learner in acquiring the relevant

CT skills and competences, such as abstractions and decomposition, through a guided learning

process. We present the results of an exploratory study with 40 participants using the ctGameStudio

environment. In this context, we particularly elaborate on findings from analyzing the learning

progressions.

2. Background and Related Work

Selby (2013) identifies five main dimensions of CT skills: algorithmic thinking, decomposition,

generalization, abstraction, and evaluation. Following an understanding based on general common

sense, the concept of abstraction is often seen quite similar to the one generalization. However, as

pointed out by Wing (2008) and further explicated by Hoppe & Werneburg (2018), abstraction in

computer science is based on specific constructive operations used in the formal specification and

creation of logical artifacts including concepts such as recursion, abstract data types, higher-order

functions and lambda expressions. When we address abstraction in CT we should be aware of this

specific meaning.

 In the history of computer science education, Logo is an important reference and milestone

as an educational programming language particularly designed for mathematical problem-solving

(Papert, 1996). The reduced set of syntactic rules and predefined commands helps to introduce

programming without the typical barriers for novices (McNerney, 2004). On the other hand, Logo

was designed to give access to deeper mathematical constructs, including recursion and functional

abstraction as well as turtle geometry as an alternative to using global Cartesian coordinates

(Abelson & DiSessa, 1986). The design of the Logo turtle followed the concept of “body syntonic”

reasoning, where the learners take a first person perspective and imagine they would be in the place

of the turtle. This enables the learners to understand geometric concepts through their “sense and

knowledge about their own bodies” (Papert, 1980). Papert and Turkle (1990) understand

“computation as the ultimate embodiment of the abstract and formal”.

Using games with virtual agents in a microworld is another way to support a first-person

perspective. Games also create challenges at various levels and thus come with a high degree of

problem orientation in the sense of Wing (2006). The strategies formulated as solutions to the

challenges are of algorithmic nature. With Robocode and RoboBuilder, Weintrop and Wilensky

(2012) provide a game-based environment with a text-based and a visual block-based programming

tool to develop strategies for robot fights. The attempt to win grants learners a strong incentive to

improve the algorithms developed. Robocode and RoboBuilder are open environments with a high

degree of freedom to develop and refine strategies. Although a well-structured wiki is available for

the API, the entry threshold is very high. Students start with the whole set of commands and have no

introducing levels to become familiar with the learning environment or to learn basic CT skills.

Kazimoglu, Kiernan, Bacon, and MacKinnon (2012) defined in their game-based environment

“Program Your Robot” consecutive tasks starting with a low entry threshold. With increasing

demands on the design-debug-run stages, key aspects of CT are fostered.

 Following the tradition of Logo’s turtle geometry, a low threshold and smooth progression

facilitate the development of abstractions. However, if students have only this opportunity at their

disposal, they cannot discover certain abstraction types on their own. So, it is inevitable to provide a

flexible progression for both forms of learning (Bauer, Butler, & Popović, 2017) – guided learning

and open exploration – like on-demand or just-in-time direct guidance for new tools.

 Another kind of learning support and guidance is provided by intelligent tutoring system.

ITS are based on a knowledge model of the domain and solution strategies for a certain set of

problems (Corbett, Koedinger, & Anderson, 1997). Although working under this type of system

requires a high level of knowledge organization, it has been applied to teaching programming tasks.

Blikstein (2011) collected in an open programming course all actions, including

programming events and non-coding events like button-clicking and parameter variation in

NetLogo. He proposed an approach directed to identify behavior from these log files and uses the

544

error rate per compilation as an outcome measure. His approach is the base to develop metrics to

provide an assessment tool and pattern-finding lenses for programming tasks.

 Moreno-León et al. (2015) went one step further with the assessment tool “Dr. Scratch”

based on the Scratch learning environment. Dr. Scratch provides students with feedback about their

programming activities. The assumption is that feedback on the errors and successes in the

programming process will help to improve the learners’ CT skills. The underlying analysis checks

the solutions for concepts like parallelism, synchronization, etc. Then, the authors map the observed

competence to a scale from 0 to 3. For example, the usage of an “if”-clauses is scored with one point,

whereas an “if-else” receives two points, logic operations add another point etc. These scores are the

basis for feedback to the learners, which is easy and fast to understand. But the question is, how to

map theses CT concepts to an overall CT competence assessment; also, it is questionable whether a

binary attribute (used the block/does not use the block) is sufficient to assess a competence.

 Brennan and Resnick (2012) conducted artifact-based interviews to assess the

computational concepts. They point out, that it is difficult to conceive CT skills as a binary state at a

single point in time based on a given program solution. They put a focus on process features such as

the development of ideas and the role of debugging. Grover and Basu (2017) used questionnaires to

detect typical errors. Their conclusion is that the students (from 6th
 to 8th

 grade) have problems to

comprehend how, e.g., loops and Boolean operators work. And these problems with fundamental

abstractions lead to difficulties in developing executable programming solutions. Using these

abstractions needs to be analyzed more closely in order to be able to give meaningful interventions

on a pedagogical level.

 Among the discussed approaches, the study of Blikstein is the only one that does not use a

block-based visual programming environment. Instead, it uses the error rate per compilation as a

feature for the analysis. Sure, the subjects are students from higher education. But the question is,

whether errors in syntax and semantic are indicators of CT skills. Visual block-based programming

tools are often used, since they are easy to use for students and have a low threshold and avoid issues

of programming syntax (Grover & Pea, 2013).

 Taking into account the grown practice of visual programming environments in education

we want to design an open arena for the acquisition of CT skills that exploits a gaming approach but

also scaffolds a systematic learning progression through computational abstractions such as loops,

procedures and functions. In the following section, we will discuss how the use of these abstractions

– and not only concepts – can be defined and measured. The approach is evaluated in a study with 40

participants.

3. Conceptual Approach

In conjunction with a student software project at the University of Duisburg-Essen entitled

“Computational Thinking through Gaming”, we designed and developed the web-based learning

environment ctGameStudio1. This project aimed at providing a game-based environment to learn

programming and CT skills together with a guidance component. Guidance is personalized through

a mentor as a virtual companion.

 Figure 1 shows how students control a virtual robot in a microworld via the visual

programming tool. Running the program code results in a direct visual feedback in the microworld.

The mentor in the upper right corner gives just-in-time hints to support the programming process.

The choice fell on a block-based visual programming tool designed with Blockly2 to stay as close as

possible to natural language wording and descriptions for strategies. Developed by Google, Blockly

is a library to build an editor that facilitates the building of visual block-based programming tools,

especially editors, and provides a framework for generating code in text-based languages like

JavaScript (Pasternak, Fenichel, & Marshall, 2017).

 In addition to the perceptual benefits of a visual block-based programming tool, syntax

errors are excluded, and the learning and gaming flow is not interrupted. Combining blocks always

1 http://ct.collide.info/ctGameStudio/
2 https://developers.google.com/blockly/

545

produces executable code (Resnick et al., 2009). Also, highlighting of the actual executed

programming block supports the evaluation of the code.

Figure 1. ctGameStudio with a visual block-based programming tool (left) and the microwold with a

red controlable virtual robot (right)

 The students have access to a guided learning environment and an open stage. The goal of

the open stage is to defeat robots programmed by other users in a tournament. The goal of the guided

learning environment is the preparation for this tournament mode, but also to develop computational

competences, abstractions and to foster CT. The guided learning environment leads students through

the exploration of new abstractions. According to Grover and Basu (2017), we focus on the basic

abstractions. In the open stage, the learners can apply these new concepts.

 According to the study of Blikstein (2011) and others, the evaluation of the programming

solutions is important for providing appropriate feedback and support. For this reason, an analytics

component is connected to ctGameStudio, in which learner data are collected to assess the students’

behavior.

 Table 1 shows the main features of the guided learning environment of ctGameStudio. It is

divided in four main levels with a subdivision to focus on specific Computational Thinking

competences. Instructions at the beginning and a just-in-time guidance by the mentor help to

complete the levels. At each sub-level, new blocks become available to slowly introduce the learner

to the tool. The functionality of the available blocks can be read at any time in a “block lexicon”.

Table 1

Level structure of the guided learning environment of ctGameStudio.

Level Sub-level Content Focus of the Computational

Thinking competence

1

Movement

1.1 Move forward Evaluation

1.2 Sequences Algorithmic Thinking

1.3 Approximated circle

Movement

Generalization

2

Loops

2.1 Structured repetition Decomposition

2.2 Transformation in a loop Abstractions

3

Events

3.1 Scanning of a static object Abstractions

3.2 Tracking of the mentor

depending on his random

movement

Algorithmic Thinking

4

Interaction

4.1 Attacking strategies against

a passive opponent

Combination of all

Competencies

4.2 Defending strategies

against an attacking

opponent

546

Level 1.1 focuses on evaluation of system feedback. Here, the learner uses only the basic

“move forward”-block. But the student can vary the parameter for the distance to reach the target.

The highlighting gives also feedback about the activity and is active until the move is executed. In

the following sub-levels, the set of commands was extended by “turn left/right”. The students create

sequences of these commands and create – in analogy to turtle geometry with LOGO – polygons

(e.g. hexagons).

 Level 2 sets the focus on introducing and creating iterative loops. In the first part, the

students compose a sequence of move commands in the shape of stairs. Such repetitive

subsequences imply the use of loop abstractions, which motivates the use of a count-controlled loop

in the next sub-level.

 The required abstractions for level 3 are on different layers, working with attributes of

objects such as object type, and an event mechanism for scanning these objects: The learners have to

distinguish object types in order to implement type-specific behavior of the virtual agent. For

example, the virtual agent scans an object and dodges it if it is a bomb or collects it if it is

ammunition. The last sub-level combines the latter with loop abstractions and the virtual robot tracks

an object “on scan”.

 Level 4 helps to develop a strategy against other robots. In the first sub-level, the user has to

implement an attack strategy and in the second sub-level a defense strategy. This given

decomposition gives the student a structure for improving in the next steps their programming.

(Parametrized) procedures and functions are introduced as another abstraction, to reduce code and

brush up the structure and quality of the programming.

 The open stage is a mode to develop strategies against other players. This approach creates a

seamless transition from guided introductory programming to an open sandbox to foster and practice

CT competences without limiting the solution space.

4. Evaluation

The aim of this exploratory evaluation is to better understand the learning progression with guided

learning environments and to draw conclusions from the programming behavior based on action

logs.

4.1 Experimental setting

The experiment has been conducted in a supervised setting using the web-based learning

environment (ctGameStudio) for capturing data of the programming tasks and learning progressions.

An online survey tool has been used to assess the usability and user experience of the learning

environment. In this experiment, 40 people participated (24 men; 16 women; mean age: M = 22.23,

SD = 3.98). A requirement to participate was having no or a low experience in programming.

 The participants had a time limit of 45 minutes to accomplish the programming tasks (seven

levels of ctGameStudio). Each participant has been supervised, but without providing additional

hints, to solve the tasks. However, we had to exclude seven cases from the data set of the exploratory

analysis due to time limit violations (e.g. early quitting) and technical issues that led to data loss.

 The programming tasks were situated in the first seven levels of the ctGameStudio

environment and cover classical programming-related tasks that are known from turtle geometry

(e.g. simple movement, tracing a polygon), and from event-based programming (scanning of

objects, event-handling “on scan”). The final level combines both aspects in a ‘follow task’ that

incorporates the use of scanning of a moving object in order to track it ‘on scan’. Every level starts

with a short story and short instructions about the new concepts to be introduced. The participants

had the possibility to get additional information about the specific programming blocks and

predefined methods in a “block lexicon”.

4.2 Analysis of the learning progression

In our experimentation, the learner artefacts, particularly the programming solutions to the specified

tasks of each level, have been collected through the ctGameStudio environment. To characterize the

547

learning progression of each learner, we extracted the following features from each solution: #Runs,

#Changes per run, #Creates, #Consecutive changes per create, Time spent in minutes. These features

are mapped to CT competences to describe the learning progression of each user. Additionally, we

subdivide the users into groups of different achievement levels and compare the performance

characteristics and learning progression for these groups.

 Table 2 shows the interpretation of the basic indicators in terms of CT-related skills. During

the study each action was logged: changing the programming code, running the programming code

and the event of completing a level. The changing events are divided in creating a block, changing

the block structure by moving a block in or out of its target scope, deleting a block, and varying a

parameter.

Table 2

Interpretation of basic measures for the collected data.

Indicator Interpretation

Runs Testing and evaluating behavior of the created

programming code

Changes per run Trial and error behavior or advanced planning

Creates Active extensions of the programming solution

Consecutive changes per create Structured editing

Time spent in minutes Measure for efficiency

Figure 2 presents the distribution of runs per level for all users per sub-level as a measure for their

evaluation behavior.

Figure 2. Distribution of the runs per level with the number of users.

 The boxplots in Figure 2 show the distribution of runs per level for all users who reached the

level (regardless of whether or not they completed the level), all users who successfully completed

the level, and for all users who did reached but did not complete the level. Starting with level 2.2, not

every learner has successfully completed the level, so first differences in the boxplots can be seen.

Two students did not pass this level and dropped out. Of these, one user executed the code 16 times

and the other one 48 times. These values are much higher than the median (nine runs) of the users

who successfully finished the level. Since they could not skip the level, they used the time left to

modify the programming code but did not develop any ideas to solve this level. Supportive functions

are needed at this point to help these learners to find a solution.

 Level 3.2 was only reached by four students and solved by two students. The figure shows

that those students who completed the level needed more runs than those who did not finish the level

– an indicator that those students who did not complete the level had not enough time to explore, to

try out, and to solve the level. A similar structure can be seen in level 3.1.

 Additionally, outliers are not included in the boxplot and shown as dots outside of the box.

In the first two levels the distribution is small and symmetrical around a low median. In level 1.3 the

median of executed runs increases abruptly. Also, a skewness to the right side shows that there are

548

some participants who need many more runs to complete the level. The preparation phase for the

loop was solved, on average, in less runs. Beginning with level 2.2, different abstractions (loops,

event-callback associations, structured object types) were introduced. In these cases, the median and

deviation increase extremely, primarily with a skew to the right.

 To further analyze the “abstraction gaps” that we started to observe at level 2.2, we want to

dig more deeply into the advanced planning behavior of the students indicated by the feature

#Changes per run. Figure 3 presents the values for each user and each run.

Figure 3. Changes per run and user for level 1.2 (left) and 3.1 (right)

 As can be seen in Figure 3 and level 1.2, most changes were made in the first run and only

small changes in the following runs, expect for those who needed more than six runs. These students

also did not pass level 3.1. In level 3.1, the first run was done with a low number of changes and then,

an unstructured pattern of changes can be observed. In addition, not everyone who needed just a few

runs completed the level. This is due to the time limit of 45 minutes. It was only related to working

on the whole learning environment. In each sublevel, the learners could take as much time as they

needed. Consequently, a subdivision is needed that analyzes the behavior in the learning

environment depending on the learning outcome.

Figure 4. Number of students who finished n levels

 As shown in Figure 4, most of the students finished five levels (average success), five

students finished more levels (high success), and three students finished only four levels (low

success). Table 3 presents all features for these three groups in level 1.2 and 2.2. In level 2.2, the

loop was introduced as the first abstraction and the group with low success did not finish this level.

 Table 3 shows that the high achievement group has lower values in each category (e.g., no.

of runs, time spent) in comparison to the groups with average or low achievement. This indicates,

that they followed a strategic approach and did not need as much exploration as the other groups.

The differences are relatively small for level 1.2 but quite distinctive for level 2.2. The low

achievement group needed much more runs to evaluate their changes than the other two groups. This

group also created more blocks and needed almost half of the available time. I.e., time was not used

efficiently, also on average, many changes were made per run and many blocks were created to try

out different strategies.

549

Table 3

Median and standard deviation of each feature and learner group in level 1.2 and 2.2.

Items Level

1.2

Success level

low average high

Runs M 3.3 3.5 2.2

SD 1.7 2.8 0.4

Changes

per run

M 5.1 7.1 5.7

SD 2.8 4.4 1.3

Creates M 3.0 4.0 3.2

SD 0 1.3 0.4

Consecu-

tive Changes

per create

M 2.2 2.3 1.8

SD 0.6 0.8 0.6

Time spent

in minutes

M 2.6 1.6 1.1

SD 0.5 0.9 0.6

Items Level

2.2

Success level

Low average high

Runs M 32.0 13.0 8.6

SD 16 9.3 3.8

Changes per

run

M 5.1 2.8 2.7

SD 0.9 2.1 1.0

Creates M 14.5 8.8 7.8

SD 2.5 5.9 5.6

Consecutive

Changes per

create

M 2.3 2.1 2.1

SD 0.05 0.6 0.3

Time spent in

minutes

M 19.2 6.6 4.0

SD 6.4 5.1 1.9

 The task of level 2.2 was to create a loop through which the code would be condensed and

abstracted. Taking a look at the solutions of the low achieving group shows that parameters were

varied in an unstructured way and superfluous code was added in/before/after the loop, which

explains the high value of the feature #changes per run.

4.3 Usability

The user experience has been tested using a shortened version of the UEQ questionnaire (Laugwitz,

Schrepp, & Held, 2006). Some items in the test have been modified in order to be more suitable for

younger participants in terms of the vocabulary used (Hinderks, Schrepp, Rauschenberger,

Olschner, & Thomaschewski, 2012). The questionnaire used a 5-point Likert scale (1 = “no

agreement”, 5 = “total agreement”). Table 4 shows the results of the survey. Most of these average

results were above the neutral point on the scale. The participants valued the creative and novel user

interface (4.10) concept as an alternative approach to programming. The dimension of stimulation

was well received (3.80), which might have the reason that the learning environment contains a

game setting with a visually attractive game engine so that stimulates the learners in a way that is

similar to computer games.

Table 4

User Experience of ctGameStudio regarding the results of the UEQ. (-) indicates an inverted item.

Scale Item M SD

Stimulation Interesting 3.80 1.018

Dependability Supportive 3.15 1.189

Efficiency Organized 3.45 0.904

Novelty Creative 4.10 0.841

Perspicuity Easy to learn 3.10 1.128

Perspicuity Complicated (-) 3.43 1.059

Dependability Unpredictable (-) 2.47 1.176

Dependability Easy to operate 3.68 0.997

Dependability Meets expectations 3.38 1.170

4.4 Discussion

As a negative aspect of the usability evaluation, participants found the environment complicated

(3.43). This might be caused by the low detail in the guidance by the tutor, which is on a too general

level, but also caused by a jump in the difficulty between level 2.2 and 3.1. The analysis of the

learning progressions uncovered such a gap.

550

As can be seen on the left-hand side of Figure 5, in the first four levels the number of

changes per run increases constantly. The learners become more secure in the implementation of

their strategies and have more focus on the goal that they want to achieve. The runs themselves

behave similarly, but in level 1.3 there is a strong upward bias. This is due to the structure of the

level. Learners are supposed to create an approximate circular motion that requires many block

elements. Frequent testing of the strategy to see if the parameters have been chosen correctly is

essential. Level 2.1 was much easier after this level, so they needed fewer runs and the construction

of the programming was easier.

Figure 5. Average of the runs per level (orange) and the changes per run and level (blue) for

the users who finished the level (left) and did not finished the level (right)

In contrast to the previous levels, not all of the students finished level 2.2. This level marks

a break as everyone needed a lot of runs with relatively fewer changes per run. In addition, the

students who could not finish the level, needed almost twice as many runs and made almost half as

many changes per run (cf. Figure 5, right diagram). This suggests that the level of difficulty in

introducing the abstraction “loop” is very high for students. A similar behavior can be seen in level

3.1, where the aspects “data abstraction and events” were introduced. The same applied for level 3.2,

which indicates that learners need more support when abstractions are introduced.

5. Conclusion

In this paper, we presented a game-based learning environment designed to help and stimulate

students in developing CT competences. On the one hand, we provide a guided learning mode based

on levels, in which a student can get just-in-time feedback and on-demand hints with the help of a

tutor (or “mentor”). On the other hand, the learner can perform “free” robot fights against other users

with similar skill levels in the open stage as suggested by Bauer et al. (2017). The learners can

choose an environment that corresponds to their skill level and needs. The possibility of the

competitive open stage allows for open-ended challenges.

 Our analysis showed that the main distinctive difficulty in the learning progression in

guided mode was the introduction of loops and other abstractions in level 2.2. In particular, the low

achieving students struggled with this hurdle. Grover and Basu (2017) also discovered a similar

obstacle related to basic abstractions such as loops. As a consequence, we see a need for providing

more worked out examples before students are asked to use the constructs actively. We expect

similar issues to occur with higher level abstractions. We have been able to confirm this finding with

code analysis techniques.

For the evaluation, we introduced features to measure the behavior of the students when

they are programming. Each feature relates to specific CT competences. While Moreno-Leon et al.

(2015) proposed measurements for specific computational concepts depending on their occurrence

on different layers, the results of the features presented in this paper are based on the learner

behavior in the event of difficulties with specific computational concepts. Identifying difficulty in

the programming process is, according to Blikstein (2011), important “to design and allocate support

resources.” Therefore, we provided a set of features and metrics that identified these difficulties in

551

our exploratory study. These features will be a basis for further learning analytic metrics and support

mechanisms to provide feedback and help especially for lower achieving students.

Acknowledgements

We would like to thank all the people who prepared and revised previous versions of this document,

especially the students of the project course and the participants of the study.

References

Abelson, H., & DiSessa, A. A. (1986). Turtle geometry: The computer as a medium for exploring

mathematics. MIT Press.

Bauer, A., Butler, E., & Popović, Z. (2017). Dragon architect: open design problems for guided learning in a

creative computational thinking sandbox game. Paper presented at the Proceedings of the 12th

International Conference on the Foundations of Digital Games.

Blikstein, P. (2011). Using learning analytics to assess students' behavior in open-ended programming tasks.

Paper presented at the Proceedings of the 1st international conference on learning analytics and

knowledge.

Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the development of

computational thinking. Paper presented at the Proceedings of the 2012 annual meeting of the American

Educational Research Association, Vancouver, Canada.

Corbett, A. T., Koedinger, K. R., & Anderson, J. R. (1997). Intelligent tutoring systems. In Handbook of

Human-Computer Interaction (Second Edition), 849-874.

Grover, S., & Basu, S. (2017). Measuring Student Learning in Introductory Block-Based Programming:

Examining Misconceptions of Loops, Variables, and Boolean Logic. Paper presented at the Proceedings

of the 2017 ACM SIGCSE Technical Symposium on Computer Science Education.

Grover, S., & Pea, R. (2013). Computational Thinking in K–12. Educational Researcher, 42(1), 38-43.

Hinderks, A., Schrepp, M., Rauschenberger, M., Olschner, S., & Thomaschewski, J. (2012). Konstruktion

eines Fragebogens für jugendliche Personen zur Messung der User Experience (Construction of a

questionnaire for adolescents to measure the user experience). Usability Professionals, 2012, 78-83.

Hoppe, H. U., & Werneburg, S. (2018). Computational Thinking - more than a Variant of Scientific Inquiry! In

S.-C. Kong & H. Abelson (eds.), Computational Thinking Education. Springer (to appear).

Kazimoglu, C., Kiernan, M., Bacon, L., & MacKinnon, L. (2012). Learning programming at the

computational thinking level via digital game-play. Procedia Computer Science, 9, 522-531.

Laugwitz, B., Schrepp, M. & Held, T., (2006). Konstruktion eines Fragebogens zur Messung der User

Experience von Softwareprodukten (Construction of a questionnaire to measure the user experience of

software products). In: Heinecke, A. M. & Paul, H. (Hrsg.), Mensch und Computer 2006: Mensch und

Computer im Strukturwandel. München: Oldenbourg Verlag. (S. 125-134).

McNerney, T. S. (2004). From turtles to Tangible Programming Bricks: explorations in physical language

design. Personal and Ubiquitous Computing, 8(5), 326-337.

Moreno-León, J., Robles, G., & Román-Gonzáles, M. (2015). Dr. Scratch: automatic analysis of scratch

projects to assess and foster computational thinking. RED. Revista de Educación a Distancia, 15(46).

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. Basic Books Inc.

Papert, S. (1996). An exploration in the space of mathematics educations. International Journal of Computers

for Mathematical Learning, 1(1), 95-123.

Pasternak, E., Fenichel, R., & Marshall, A. N. (2017). Tips for creating a block language with blockly. Paper

presented at the Blocks and Beyond Workshop (B&B), 2017 IEEE.

Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan, K., Silverman, B. (2009).

Scratch: programming for all. Communications of the ACM, 52(11), 60-67.

Selby, C., & Woollard, J. (2013). Computational thinking: the developing definition.

Weintrop, D., & Wilensky, U. (2012). RoboBuilder: A program-to-play constructionist video game. Paper

presented at the Proceedings of the Constructionism 2012 Conference. Athens, Greece.

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33-35.

Wing, J. M. (2008). Computational thinking and thinking about computing. Philosophical Transactions of the

Royal Society of London A: mathematical, physical and engineering sciences, 366(1881), 3717-3725.

Wing, J. (2014). Computational thinking benefits society. 40th Anniversary Blog of Social Issues in

Computing, 2014.

552

