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Abstract: This study presents an approach to predict learner’s perceived difficulty using 

features extracted from electroencephalography (EEG) data. We demonstrate how EEG signals 

can be used effectively to estimate learner’s perceived difficulty of learning content. Student 

self-reports of perceived difficulty and EEG data were gathered from 9 participants who 

watched a video lecture. A machine learning model with random forest classifier achieved a 

maximum accuracy of 75.24% in estimating perceived difficulty. Furthermore, the model 

predicted the difficulty level of the entire video lecture for individuals fairly well. Our results 

have implications for intelligent tutoring systems which aim at providing the learner with an 

adaptive and personalized learning environment. 
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1. Introduction 

 
Assessing and monitoring the mental states of learners is important in the teaching-learning process. 

Detecting the mental states of the learner by collecting appropriate data and providing a personalized 

experience for every learner has always been the holy grail of adaptive learning (Shawky & Badawi, 

2018). Intelligent tutoring systems (ITS) are known for their focus on providing the learner with an 

adaptive and personalized learning environment. The learner model contains knowledge about the 

learner’s cognitive-affective states and guides individualized learning trajectories (Nkambou, 

Mizoguchi, & Bourdeau, 2010).  

There are several approaches to create learner models. A learner’s behavioural data such as 

keystrokes (Bixler & D’Mello, 2013), clickstream data (Baker et al., 2008; D’Mello, 2017) etc. can be 

used to infer learning processes. For example, keystroke data was used to estimate engagement of 

learners engaged with writing task (Bixler & D’Mello, 2013), and clickstream data to model whether 

the learner is engaged in gaming the system (Baker et al., 2008) etc. Another approach is to use a variety 

of psychophysiological measures to measure different mental states. Eye tracking has been 
demonstrated to be a good indicator of cognitive workload (Schultheis & Jameson, 2004), attention 

(Conati, Merten, Muldner, & Ternes, 2005), engagement (D’Mello, Olney, Williams, & Hays, 2012) 

and also boredom (Jaques, Conati, Harley, & Azevedo, 2014). Facial emotion recognition has been 

used to measure frustration (Sidney et al., 2005) and perceived difficulty of learners (Whitehill, Bartlett, 

& Movellan, 2008). A multimodal approach has also been found to be effective in such applications for 

monitoring cognitive and affective states within an ITS (Lane & D’Mello, 2019). Pressure-sensitive 

mouse and chair, and galvanic skin response are some other less commonly used psychophysiological 

sensors that have been used (Arroyo et al., 2009; Kapoor, Burleson, & Picard, 2007). Multimodal 

approaches have usually yielded good accuracy in predicting mental states (Arroyo et al., 2009; Kapoor 

et al., 2007). A relatively less common data in this context is that from electroencephalogram or EEG, 

which measures brain waves. It has also shown promise in capturing changes in the attention and 

cognitive workload of learners in ITS (Chaouachi, Jraidi, & Frasson, 2015).  

As evident in the aforementioned discussion, some commonly investigated parameters in ITS 

research are cognitive workload, attention, engagement, frustration, boredom etc. The knowledge of 



learners’ perceived difficulty is also an important (Lane & D’Mello, 2019), albeit relatively less studied 

variable. A learner may perceive the content difficult to understand (regardless of the true difficulty of 

the topic), and his perception may differ from other students. Even then, such perception have been 

shown to decrease interest and increase boredom directing the focus more towards the feeling of the 

negative affect which can further lower the attention and motivation, eventually resulting in poor 

performance (Pekrun, Goetz, Titz, & Perry, 2002). There have been several attempts to measure 

perceived difficulty in learners (Pham & Wang, 2018; Whitehill et al., 2008) and adjust instructional 

material accordingly. 

The DEBE framework has been recently proposed as a systemized way to collect continuous, 

fine-grained feedback from students on their levels of perceived difficulty (and affective states) during a 

lecture (Mitra & Chavan, 2019). We use student-self reports in the form of DEBE feedback to train an 

EEG machine learning algorithm that can be used to predict levels of perceived difficulty when 

interacting with a video lecture. In this study, we investigate the potential of a low-cost consumer-grade 

EEG device, MUSE™, in predicting perceived difficulty in learners. 

 

 

2. Method 

 

2.1 Experimental set-up 

 
The setup of this experiment was designed keeping in mind that it should be relevant to, and closely 

resemble real-world conditions as opposed to providing elementary cognitive tasks that are often used 

in psychology studies (e.g., simple arithmetic to measure cognitive load). For this purpose, we obtained 

a video recording of 47 minutes duration for a lecture from the Advanced Heat Transfer course offered 

at the university. Ten students, aged 22-29, taking this course participated in the study. However, we 

have used the EEG data of 9 participants for analysis due to the presence of high noise and missing 

values (>25%) in one of the samples. The students were asked to come to the laboratory individually 

and watch the lecture video. The Institute Ethics Committee approved the study (IEC Approval 

Letter_Proposal No. IITB-IEC/2018/004). The students watched the video lecture and provided DEBE 

feedback on four parameters, namely, whether the lecture was easy, difficult, engaging or boring? The 

students could press the buttons as often they felt any of the four states in real-time while watching the 

video lecture. Details of the experimental setup and related work have been provided in (Chavan, 

Gupta, & Mitra, 2018). This feedback was unprompted and the students could click whenever they felt 

any of the four cognitive/affective states. We used a MUSE™ EEG device having 4 electrodes at AF7, 

AF8, TP9 and TP10 according to the 10-20 international system, sampling at 256 Hz frequency to 

record the EEG signals. For the purpose of this study, we chose to focus only on the instances when the 

students clicked either difficult or easy (engaging and boring clicks were not analyzed) with the 

understanding that this represents their perceived difficulty of the topic. 

 

2.2 Data pre-processing 

 
EEG data is noisy, complex and suffers from the curse of high dimensionality. Hence, this step aims at 

cleaning the EEG signal, managing its complexity by filtering out less relevant information from the 

signal and reducing dimensionality by selecting a subset of relevant channels. Therefore, we decided to 

look at only the frontal lobes that have been shown to be active during higher order processing (Zarjam, 

Epps, Chen, & Lovell, 2013). The data from the two temporal lobes were discarded. Besides the lower 

relevance of those areas for the task, they are also susceptible to more artefacts such as jaw clenches 

(Kappel, Looney, Mandic, & Kidmose, 2017). A 60 Hz notch filter was applied uniformly to remove 

the power line artefact. The cleaned data were then chunked into one-minute windows preceding each 

difficulty or easy click. Each such segment was divided into 5-sec epochs and all 12 epochs thus formed 

were categorized as either easy or difficult.  

EEG data analysis is usually confined to either the frequency or the time domain. However, this 

dualistic approach of data analysis completely discards the information contained in one or the other 

domain. An alternative approach would be to retain information from both domains for the analysis. 

Discrete wavelet transform (DWT) is one such analysis that uses information from both domains. The 



DWT method is widely used for the time-frequency analysis in EEG signals, also due to non-stationary 

characteristics of EEG signals and DWT does not assume signals to be stationary. Wavelet Packet 

Decomposition (WPD) is a wavelet transform method where the signal is passed through more filters 

than the discrete wavelet transform (DWT) resulting in much more extensive decomposition and offers 

richer signal analysis. Hence, we have used WPD for our analysis. The WPD method decomposes the 

signal using successive high pass and low pass filters, and this time-scale representation is generated by 

dilation and translation of a mother wavelet. As the choice of mother wavelet depends on the 

application, researchers have mentioned that Daubechies order-4 (db4) is the most suitable mother 

wavelet for EEG signal analysis (Adeli, Zhou, & Dadmehr, 2003). Hence, we applied level-5 Wavelet 

Packet Decomposition using Debauchies-4 mother wavelet to decompose the signal and then extracted 

approximate delta (0-4Hz), theta (4-8Hz), alpha (8-16Hz), beta (16-32Hz) and gamma (32-64Hz) 

bands. 

 

2.3 Machine learning 

 
Feature extraction aims at describing the EEG signal by a few relevant values called “features”. 

Features were extracted from the EEG signals to construct features vectors (samples) for input into the 

machine learning models. Such features should capture the information embedded in the EEG signals 

that is relevant. In passive brain-computer interface (BCI) applications, entropy and energy are one of 

the most effective and commonly used features. Furthermore, researchers have found these to be 

statistically significant in determining cognitive states (Zarjam et al., 2013). Therefore, energy and 

Shannon entropy were extracted from each of the five frequency bands (alpha, beta, etc.) from both the 

frontal channels giving rise to a feature vector with 20 values (2*5*2=20). After extracting the feature 

vectors from the epochs, we created datasets corresponding to difficult and easy feedback epochs for 

each individual. The individual datasets were normalized (z-normalization) to account for individual 

differences and then merged to a single dataset of feature vectors.  Initially, we had 778 instances of the 

difficult class and 384 instances of the easy class but, to avoid overrepresentation of the difficult class, 

we selected random 384 samples out of 778 samples for the difficult class. Therefore, our dataset 

comprised 384 instances each for difficult and easy class each. 

Finally, we compared performances of various ML classifiers, namely, support vector machine 

(SVM), decision tree, artificial neural network (ANN) and random forest, in order to optimize and 

achieve the best results. We used hyperparameter tuning to achieve optimal accuracy. To test and 

validate the models thoroughly, we used k-fold cross-validation (k = 10). In k-fold cross-validation, the 

dataset is partitioned into k equal-sized non-repeating complementary subsets. Then, out of k subsets, 

k-1 subsets are used as training set, and 1 subset is retained as the validation set. This process is repeated 

k times, with each of the k subsets used exactly once as the validation set. All reported values are 

averages of the 10 iterations of this cross-validation. 

 

 

3. Results and discussion 

 

3.1 Performance of classifiers  

 
We implemented SVM using three different kernels: linear, polynomial (degree = 3) and gaussian radial 

basis function (rbf). Further, for each kernel, we tuned the penalty parameter (C) of the error term. The 

best accuracy was 62.23% with the rbf kernel and C = 10. Several ANN architectures were implemented 

with Rectified Linear Unit (ReLU) and “logistic” as the activation function for the hidden layers and 

output layer, respectively. A maximum accuracy of 64.37% was achieved with two hidden layers, each 

having 64 neurons. The decision tree classifier with two splitting criterions, gini impurity (Gini) and 

information gain (entropy), achieved a maximum accuracy of 66.11% with splitting criteria = 

information gain (entropy). Finally, with a random forest classifier, we achieved a maximum accuracy 

of 75.24% with splitting criteria = Information gain (entropy) and the number of decision tree classifiers 

= 50. 

 



3.2 Sensitivity analysis for random forest classification 

 
We performed a sensitivity analysis by varying the length of the time window for data extraction 

preceding a feedback click and the length of epoch used to divide it further (Table 1). In this paper, we 

have achieved results with time window length = 60 seconds and epoch length = 5 seconds. Decreasing 

the epoch size increases the accuracy till 1 sec, after which the accuracy reduces, indicating a tradeoff 

between the size of dataset and the noise introduced by reducing the epoch size. For epoch sizes greater 

than or equal to 2 sec window size of 1 mimute seem to be an ideal choice as accuracy falls on both 

sides. However, for smaller epoch sizes, increasing window size only decreases accuracy, possibly 

indicating the fact that the algorithm is sensitive to the noise introduced as a result of reducing epoch 

size with increasing window size.  

 

Table 1 

Best classification accuracies (in percent) with Random Forest classifier with varying length of the time 

window for data extraction and epoch length.  

 Time window (sec) 

      

 

Epoch 

(sec) 

 30 60 120 

0.5 75.26 73.86 71.95 

1 76.41 75.68 72.19 

2 74.79 76.10 73.96 

5 72.72 75.24 72.10 

10 67.78 72.38 69.40 

 

3.3 Predicting perceived difficulty from EEG data  

 
To further test the potential of the ML model, we used the trained model to estimate the difficulty level 

for the entire lecture for each individual participant. The EEG data for the entire duration of the lecture 

was divided into contiguous epochs of 5 seconds. Each epoch was processed and features were 

extracted to prepare the feature vector. Subsequently, each epoch was classified using the trained 

random forest classifier, which had performed the best in our analysis. At this point, it is important to 

note that although accuracy gives an estimate of the performance of the ML algorithm it essentially uses 

5 sec epochs of one minute windows prior to all clicks to make a prediction of the category of an epoch. 

It does not give us an understanding of what the classifier would predict for those epochs that are further 

away from the clicks - either after the click or more than one minute away from one. This section 

attempts to address this issue so that we can form another representation of the utility of such 

predictions. 

The model predictions tallied fairly well with the observations. We see most clicks happen at 

predictable times (Fig 1 a, b and c). However, the number of false positives appear to be the problem 

when the predicted value appear to be either difficult or easy, but no clicks were observed. This could be 

due to a variety of reasons. The null hypothesis would be that the algorithm is indeed not suitable for 

more accurate predictions. One alternative hypothesis is that the student might be experiencing 
difficulty without recognizing it and hence does not click. The student could also be clicking only after 

feeling a particular state for a reasonable yet variable duration. The difference with these two 

possibilities being only in whether the student is aware of the cognitive-affective state s/he is in as the 

action (of clicking) would be identical.  

Despite the possible shortcomings of the temporal accuracy of the predictions, it is encouraging 

to find that for participants with many difficult (easy) clicks the algorithm is indeed showing a 

prolonged state of difficulty or ease (Fig. 1b and c). It is to be noted that the training set included only 

384 epochs each of easy and difficult segments (with possible overlaps between epochs). Therefore, the 

total training interval was equal to or less than 64 minutes (384*2*5 secs). The total predicted interval 

was  47*9 - 64 = 359 minutes (47 minute lecture duration for 9 students). Also, the ML algorithm was 

trained on all positives (interval preceding either difficult or easy clicks) but the additional data for 

prediction (359-64 = 295 minutes) were all negatives (participants did not click either difficult or easy). 

This makes Figs. 1b and c even more interesting because it seems a participant clicking exclusively 



difficult/easy tend to have long intervals of predicted difficulty/ease which could imply that, at the very 

least, the algorithm successfully predicts high average difficulty (ease) values for candidates who tend 

to click difficult (easy) several times during the lecture. 

 

 
 

       
(a)              (b) 

 

 
(c) 

Figure 1. Model predicted difficulty levels for three participants. Y-axis values (0=easy and 1=difficult) 

are averages of 40 sec or 8 epochs. For example, if 4 out of 8 epochs were predicted to be difficult, then 

the corresponding predicted difficulty level would be 0.5. 

 

 

4. Conclusion and limitations 

 
We have demonstrated the viability of a low-cost EEG device in predicting perceived difficulty of 

learners. A random forest ML algorithm was able to predict perceived difficulty in participants with an 

accuracy of 75.24%. Furthermore, when presented with new data from the rest of the lecture the model 

predictions tallied closely with the clicking behavior – students who clicked difficult (easy) more often 

were predicted to have high (low) perceived difficulty.  

In spite of the promising results, our research has some limitations. The machine learning 

model was trained with data from only 9 participants. We need a considerably larger dataset to train a 

robust and reliable classifier that can accurately classify EEG signals into the corresponding cognitive 

state. It is also likely that the accuracy would increase further with increasing size of the dataset. 

Another limitation of this study is that there was no way to validate the mental state of the participants 

when there was no click. Although we did find a consistently high or low value of perceived difficulty 

(Figs. 1b and c, respectively) for appropriate participants, we still have no validation for the interim 

gaps when there were no clicks. Another limitation of this study is the possibility that the EEG data 

were somehow affected by the clicking itself and could have introduced artefacts that were unrelated to 

the construct under investigation, namely, perceived difficulty. We are so far unable to rule out such a 

possibility.  
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