
Shih, J. L. et al. (Eds.) (2019). Proceedings of the 27th International Conference on Computers in Education.

Taiwan: Asia-Pacific Society for Computers in Education

Effects on Fostering Computational Thinking

by Externalizing a Solution with Construction of

a Problem-Solving Model

Kazuaki KOJIMAa* & Kazuhisa MIWAb
aLearning Technology Laboratory, Teikyo University, Japan
bGraduate School of Informatics, Nagoya University, Japan

*kojima@lt-lab.teikyo-u.ac.jp

Abstract: Literature on education has paid considerable attention to computational thinking

(CT), thought processes involved in formulating problems and their solutions so that the

solutions are represented in a form that can be effectively carried out by an

information-processing agent. Many attempts to develop CT in problem-solving education have

been made in K-12 education. This study proposes an approach to foster CT in curricula for

general undergraduate students: students construct rule-based computational models of problem

solving. We empirically investigated effects of construction of a rule-based model on

externalizing a solution in problem-solving in terms of problem decomposition, one aspect of

CT. Undergraduate students described knowledge required to solve a simple problem in the

format of rule-based models before and after they constructed models of the problem for a

production system. Results indicate that model construction improved student decomposition in

knowledge externalization of the solution.

Keywords: Computational thinking, learning by modeling, production system

1. Introduction

Literature on education has paid considerable attention to computational thinking (CT), which refers to

thinking like a computer scientist. In fact, CT has great influence not only in the natural sciences of

physics, chemistry, and biology, but also in psychology, economics, literature, and psychiatry. In other

words, the activity of computer scientists is now spreading into broad disciplinary areas.

Although CT has not yet been clearly defined, most researchers seem to agree on the definition

by Cuny, Snyder, and Wing (2010): thought processes involved in formulating problems and their

solutions so that the solutions are represented in a form that can be effectively carried out by an
information-processing agent (e.g., Aho, 2012; Brennan, & Resnick, 2012; Yadav, Mayfield, Zhou,

Hambrusch, & Korb, 2014). Such skill must not be reserved only for experts in information engineering,

science, and other academic areas, but instead, must be applicable by anyone who engages in problem
solving. In this respect, various efforts to implement CT training in education should be emphasized.

Above all, many attempts to develop CT in problem-solving education have been made in K-12

education (e.g., Barr, & Stephenson, 2011; Bocconi, Chioccariello, Dettori, Ferrari, Engelhardt,

Kampylis, & Punie, 2012; Grover, & Pea, 2013; Yadav et al. 2014). Such CT training generally adopts

programming as a tool to represent problem solutions in learning activities. Popular systems used in CT

training are graphical programming environments and web-based simulation authoring tools (Grover,

& Pea, 2013), which are easy to use for learners who are not information-engineering students.

Here, we propose an approach to foster CT in curricula for general undergraduate students. In

fact, in an article on CT, Jeannette M. Wing (2006) insists that professors in computer science should

teach university freshmen subjects such as “a way to think like a computer scientist” in all departments,

not just the department of computer science. In our approach, students experience modeling like a

computer scientist. Actually, they construct rule-based computational models of problem solving.

Scientists in cognitive science have used computational models as research tools for in-depth

understanding of the human mind. Such model construction is expected to improve skills for

externalizing knowledge required in problem solving, and that must foster some components of CT.

The current study investigated effects of construction of a rule-based model on the

externalization of knowledge required to solve a simple problem. We empirically confirmed how

undergraduate students externalize knowledge of a problem solution and whether construction of a

computational model improves students’ knowledge externalization. We particularly focused on

decomposition of a problem solution as one aspect of CT, which is described in the next session.

The remainder of this paper is structured as follows. Section 2 briefly explains part of our

approach’s theoretical background. Section 3 describes the empirical investigation’s method for

confirming the research questions. Finally, Section 4 provides study results and discusses them.

2. Theoretical Background

Many researchers have continuously discussed various aspects of CT. Although CT does not yet have a

clear definition, most researchers agree on some of its main components, for example, decomposition of

problems (modularizing) and recognition and generalization of patterns, abstractions, and automation

(algorithms) (e.g., Barr, & Stephenson, 2011; Grover, & Pea, 2013; Krauss, & Prottsman, 2017).

In our approach, students construct computational models that can simulate problem solving for

a production system. Therefore, they must disassemble solution processes in problem solving into

separate operations and set conditions to adapt the operations to proper states. To implement operations

in a computational model, students might cut certain details of the operations derived. Finally, students

implement production rules under the specifications so that the production system reproduces the

solution. These steps are regarded to involve the following four CT components proposed by Krauss

and Prottsman (2017): decomposition, pattern recognition, abstraction, and automation.

Our preliminary study (Kojima, & Miwa, 2018) confirmed that model construction improved

the pattern recognition in externalizing knowledge required for a simple problem when decomposition

of the problem was supported. Students learned to describe more appropriate conditions for knowledge

to solve the problem after they had experienced construction of a rule-based model. The current study

focused on the skill of decomposition. Mvalo and Bates (2018) studied students’ use of decomposition

as a CT component in problem-solving tasks to design and troubleshoot computer networks using

simulation software. In the study, focus group interviews to undergraduate and postgraduate students

confirmed that they used decomposition in the tasks. However, this study reported only results of

qualitative research in the domain of information engineering. To accommodate our goal to foster CT

for general undergraduate students, we must precisely investigate how non-information-engineering

students perform decomposition of knowledge. Therefore, we examined the following two research

questions.

RQ1 How do undergraduate students externalize knowledge required to solve a problem within the

format of rule-based models in terms of decomposition?

RQ2 Does construction of a computational model for the problem improve students’ decomposition in

knowledge externalization of the solution?

We have developed a framework for learning in which general undergraduate students create
models of human cognitive processes. This framework uses a production system for novices called

DoCoPro (an anywhere production system) (Miwa, 2008; Miwa, Nakaike, Morita, & Terai, 2009;

Nakaike, Miwa, Morita, & Terai, 2009). We adapt learning by constructing models to a learning

framework for fostering CT.

Figure 1 shows a screenshot of DoCoPro. A student creates a model of solving a problem by

inputting the initial states in the working memory in the left frame, editing if-then format rules in the

right frame, and simulating problem-solving processes by executing the model with the controller in the

upper frame. For allowing novices to experience model construction, DoCoPro limits its constructs.

Students have only to learn about if-then rules, matching, and some built-in functions (e.g., functions to

test whether two values are equal and to add an assertion to the working memory). It has no functions to

perform simulation effectively and to represent human cognitive functions helpful in scientific research.

Instead, it helps students examine rules through trial and error by providing functions to test the rules in

a variety of ways. Furthermore, DoCoPro has instructional texts that help students learn how to create a

model with an example of a simple block-stacking problem in addition to basic concepts of a production

system.

Figure 1. Part of Screenshot of DoCoPro.

3. Method

3.1 Procedures & Materials

We conducted lectures in which undergraduate students constructed models of problem solving in a

cognitive science class. Although most students had experienced programming in other classes, they
had not experienced training from experts in information engineering. In the cognitive science class,

two lectures were conducted for model construction. In the first lecture, students learned about a

production system with instructions from the lecturer and the first part of the instructional texts of

DoCoPro. They actually experienced creating an if-then rule with DoCoPro.

 Students were then presented a robot and banana problem, an altered version of the famous toy

problem monkey and banana. Figure 2 illustrates initial and goal states of the problem. We used this

quite simple problem because it requires problem decomposition but even novices are expected to

succeed in model construction. When this problem was presented to students, they received Figure 2

and the following descriptions about the solution: “To have the robot get the banana, have the robot

move to the same position as the banana. The robot can move into a high position by standing on the

box. The robot can also carry the box.” Representation of the initial state (a) for DoCoPro was also

presented as follows.

 (robot door low)

 (box window low)

 (banana center high)

 Students were asked to describe if-then rules necessary to solve this problem with natural

sentences. We refer to this task as a pretest. Students were instructed to design general rules adaptable

to various initial states. They completed the remainder of the instructional texts before the second

lecture, which was 2 weeks after the first lecture.

 In the second lecture, each student engaged in constructing a model of the robot and banana

problem with DoCoPro. Students were again instructed to design general rules, and compose a model

that can appropriately function regardless of the order of rules. After model construction, students again

described the rules of the problem by using sentences (a posttest).

window center door

high

low robot

box

banana

window center door

high

low

Initial state (a) Goal state (g)

Figure 2. Initial and goal states in the robot and banana problem.

3.2 Data Analysis

We assessed operations in rules of models described by students in pre- and posttests. The best

sequence of actions (rules) that can solve this problem includes the following four separate operations.

1. Robot moves to box (change the horizontal position of the robot to that of the box)

2. Robot carries box under banana (change the horizontal positions of the robot and box to that of the

banana)

3. Robot stands on box (change the vertical position of the robot to high)

4. Robot gets banana (finish)

According to what operations were described and how they were incorporated in rules, we checked

whether each student model had each of the following features.

 Normative Decomposition (ND) included four operations, and each operation was incorporated in

different rules. A model with five rules comprising the four rules and one additional rule to finish

the reasoning was also regarded as ND because it is natural to separate a functional rule only to halt

problem-solving processes.

 Enhancing Operations (EO) included one or two rules incorporating operations that can

successfully enhance a model. Actually, they were “robot moves to banana in a low position” and

“robot gets down from box.”

 Surplus Decomposition (SD) included one or two operations that must not be separated from an

operation in the best sequence. Actually, they were “robot lifts box” and “robot put box.” They are

not independent because they are necessarily performed right before/after “robot carries box.”

 Lacking Operations (LO) means omitting one or more operations in the best sequence.

 Invalid Decomposition-Combining (ID-C) incorporated multiple separate operations into a single

rule as an action in the best sequence. In a model with this feature, for example, one rule included

combined operations such as “robot moves to box and carries it under banana.”

 Invalid Decomposition-Decombining (ID-D) broke an operation in the best sequence into two or

more rules, except the case to break the rule to finish into “robot gets banana” and “halt the

reasoning.” In a model with this feature, multiple rules included the same operation with different

parameters such as “robot moves to window (if box is at window side)” and “robot moves to center

(if box is at center).”

 Invalid Operations (IO) included one or more operations that violated problem conditions or that

could not be interpreted. In violated operations, for example, the box was supposed to move

autonomously without the robot, and the robot can reach the banana without carrying the box itself.

In another example, one rule directly describes the goal state (g) without the operations on the best

sequence. Such a model cannot reproduce the solution process.

ND is regarded as a successful model, and SD, LO, ID-O, ID-D, and IO as failed because any of them

can prevent a model from reaching the goal state with the best sequence through inappropriate

decomposition or excessive operations. Although these seven features were independently assessed,

ND is exclusive from the five failed features. EO can be held simultaneously with any others, and the

five failed features can be held simultaneously with each other.

To examine RQ1 in terms of decomposition, we checked whether students described

models of ND or those with features of the five failed models in the pretest. For RQ2, we

compared pre- and posttests.

4. Results and Discussion

Figure 3 indicates proportions of students whose models had each of the seven features in the pre- and

posttests. As the graph shows, NDs were few, and many student models had features of the five failed

features in the pretest, whereas ND increased, and LO and IO decreased in the posttest. We compared

numbers of each feature between the two tests by using the chi-square test; results indicated significant

differences in ND (χ2(1) = 26.01, p < .01), EO (χ2 (1) = 3.94, p < .05), LO (χ2 (1) = 46.10, p < .01)

and IO (χ2 (1) = 26.01, p < .01). No significant differences were found in SD (χ2 (1) = 1.47, n.s.),

ID-C (χ2 (1) = 0.79, n.s.) and ID-D (χ2 (1) = 2.66, n.s.). These results confirmed that models with ND

increased and those with lack of operations decreased after model construction with DoCoPro.

0

20

40

60

80

100

ND EO SD LO ID-C ID-D IO

P
ro

p
o
rt

io
n
s

(%
)

features

pretest posttest

Figure 3. Proportions of students using each feature in pre- and posttests.

Those results indicated that in the pretest, most student models did not normatively

decompose the solution of the robot and banana problem. In other words, undergraduate

students could not necessarily externalize knowledge to solve the problem in terms of

decomposition (RQ1). And ND increased in the posttest, indicating that construction of a

model improved decomposition in knowledge externalization (RQ2). These facts reveal that

construction of a rule-based model can foster one aspect of CT.

In the posttest, LO decreased. Students who omitted some operations of the best

sequence in the pretest described them in the posttest. Most omitted operations were “finish,”

and update the position of the robot1 in “robot moves to box.” These operations may be implicit

1 In tests and model construction with DoCoPro, students wrote a name for each rule.

Some student rules had names indicating “robot carry box,” but had operations

including only a description such as “add ‘box is under banana.’”

in human problem solving because people can solve this problem without awareness of them.

In constructing a computational model, however, omitting such information causes error

feedback. Such feedback must have improved student models in terms of lack of operations.

This indicates that model construction can remove ambiguity in human representation of a

problem’s solution.

On the other hand, ID-C rather increased in the posttest although the difference was not

significant. As explained above, models with this feature had duplicate operations with

different parameters. Many students who described such models failed in model construction

with DoCoPro in the second lecture. Their DoCoPro models fail to reach the goal state.

Therefore, model construction by such students can be regarded as an inappropriate learning

activity. Although we cannot precisely discuss this point due to page limitation, it alerted us to

the necessity of learning support to guide appropriate model construction. Thus, one important

our future work is investigating whether support for constructing an appropriate model

enhances the effects and, if so, designing and implementing such support.

References

Aho, A. V. (2012). Computation and computational thinking. The Computer Journal, 55(7), 832-835.

Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K-12: what is involved and what is the role

of the computer science education community? ACM Inroads, 2(1), 48-54.

Bocconi, S., Chioccariello, A., Dettori, G., Ferrari, A., Engelhardt, K., Kampylis, P., & Punie, Y. (2016).

Developing computational thinking: approaches and orientations in K-12 wducation. In G. Veletsianos (Ed)

Proceedings of EdMedia 2016 (pp. 13-18). NC: AACE.

Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the development of

computational thinking. Proceedings of the 2012 AERA (pp. 1-25).

Cuny, J., Snyder, L., & Wing, J. M. (2010). Demystifying computational thinking for non-computer scientists.

Retrieved May 15, 2019, from http://www.cs.cmu.edu/~CompThink/resources/TheLinkWing.pdf.

Grover, S., Pea, R. (2013). Computational thinking in K-12: A review of the state of the field. Educational

Researcher, 42(1), 38-43.

Kojima, K., Miwa, K. (2018). Preliminary study on fostering computational thinking by constructing a cognitive

model. In Y.-T. Wu, N. Srisawasdi, M. Banawan, J. C. Yang, M. Chang, L.-H. Wong, & M. T. Rodrigo (Eds)

Workshop Proceedings of ICCE 2018 (pp. 265-270). Taoyuan, Taiwan: APSCE.

Krauss, J., Prottsman, K.: Computational thinking and coding for every student: the teacher’s getting-started

guide. CA: Corwin (2017)

Miwa, K. (2008). A cognitive simulator for learning the nature of human problem solving. Journal of Japanese

Society for Artificial Intelligence, 23(6), 374-383.

Miwa, K., Nakaike, R., Morita, J., Terai, H. (2009). Development of production system for anywhere and class

practice. In S. C. Kong, H. Ogara, H. C. Arnseth, C. K. K. Chan, T. Hirashima, F. Klett, J. Lee, C. C. Liu, C.

K. Looi, M. Milrad, A. Mitrovic, K. Nakabayashi, S. L. Wong, & S. Yang (Eds) Proceedings of ICCE 2009

(pp. 91-99). Jhongli, Taiwan: APSCE.

Mvalo, S., & Bates, C. (2018). Students’ understanding of computational thinking with a focus on decomposition

in building network simulations. In B. McLaren, R. Reilly, S. Zvacek, J. Uhomoibhi (Eds) Proceedings of

CSEDU 2018 (pp. 245-252), vol. 1. Setubal, Portugal: SciTePress.

Nakaike, R., Miwa, K., Morita, J., Terai, H. (2009). Development and evaluation of a web-based production

system for learning anywhere. In S. C. Kong, H. Ogara, H. C. Arnseth, C. K. K. Chan, T. Hirashima, F. Klett,

J. Lee, C. C. Liu, C. K. Looi, M. Milrad, A. Mitrovic, K. Nakabayashi, S. L. Wong, & S. Yang (Eds)

Proceedings of ICCE 2009 (pp. 127-131). Jhongli, Taiwan: APSCE.

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33-35.

Yadav, A., Mayfield, C., Zhou, N., Hambrusch, S., & Korb, J. T. (2014). Computational thinking in elementary

and secondary teacher education. ACM Transactions on Computing Education, 14(1), 5.

	Effects on Fostering Computational Thinking by Externalizing a Solution with Construction of a Problem-Solving Model
	1. Introduction
	2. Theoretical Background
	3. Method
	3.1 Procedures & Materials
	3.2 Data Analysis

	4. Results and Discussion
	References

