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Abstract: Incubation Effect (IE) refers to the phenomenon where one gets stuck in a problem-

solving activity, decides to take a break, and afterwards revisits the unsolved problem and 

eventually solves it. While studies on IE were all limited to traditional classroom activities, this 

research aimed to continue the study of IE in the context of a computer-based learning 

environment and find features that would predict the incidence of revisiting an unsolved 

problem and its positive outcome. A prior IE model was developed using a logistic regression 

but the hand-crafted features used were from aggregated data and do not reflect specific 

characteristics of students’ actions. Further analysis was conducted in this study and used a deep 

learning technique which significantly improved the performance of the IE model. In order to 

interpret the learned features of the neural network, a combination of dimension reduction, 

visualization technique, and clustering were used. It was found that the coarse-grained features 

are consistent with the fine-grained features but action level features were also discovered which 

provided more evidence that there was an improvement on how students tried to solve the 

problem after incubation. 
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1. Introduction 

 
Taking a break from a series of failed attempts to solve a problem may facilitate the solution process as 

shown in prior work (Fulgosi & Guilford, 1968; Gilhooly, Georgiou, & Devery, 2013; Penaloza & 

Calvillo, 2012; Sio & Ormerod, 2015). This momentary break is known by the name incubation (Sio & 

Ormerod, 2015). During some incubation periods, an internal mental process associates new 

information with past information to generate solution ideas (Medd & Houtz, 2002). In the context of 

education, students who get stuck in a problem-solving activity may temporarily engage in another task, 

after which, they return to the original problem and find a solution. When the student solves the problem 

after incubation, the phenomenon and its positive result is called the Incubation Effect (IE). 

IE is divided into three phases (Gilhooly et al., 2013): (a) pre-incubation phase, (b) incubation 

phase, and (c) post-incubation phase. The pre-incubation phase is when a student attempts to solve a 

problem and gets stuck. When the student decides to take a break from the problem-solving task and 

engages in another task, it signals the beginning of the incubation phase. The post-incubation phase 

happens when the student goes back to the original problem and tries to solve it again. The benefits of 

incubation prompted researchers to incorporate breaks into educational activities which were shown to 

have positive results (Lynch & Swink, 1967; Medd & Houtz, 2002; Rae, 1997; Webster, Campbell, & 

Jane, 2006). Prior studies (Ellwood, Pallier, Snyder, & Gallate, 2009; Fulgosi & Guilford, 1968; 

Gilhooly et al., 2013; Penaloza & Calvillo, 2012; Sio & Ormerod, 2015) investigated specific factors 

that could lead to successful incubation in the context of classroom tasks and suggested that engaging 

in a different activity may produce a better outcome. On the other hand, (Penney, Godsell, Scott, & 

Balsom, 2004) claimed that engaging in a task with similar nature would promote priming which allows 

students to realize the correct solution to the problem but (Segal, 2004) said that the task during 

incubation has no effect on its outcome. 

The incidence of incubation effect has also been investigated (Martinez et al., 2016; Talandron, 

Rodrigo, & Beck, 2017; (Talandron & Rodrigo, 2018) in the context of a computer-based environment 

called Physics Playground (PP) which is a two-dimensional game that is designed for high school 
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students to better understand concepts in Physics. (Martinez et al., 2016) found evidence that taking a 

break helped some students to solve a problem in which they were previously stuck. For example, if the 

student cannot solve level 3 in playground 3, the student can leave it and try to solve other levels then 

just go back to it again later. To further explore IE on PP, Talandron, Rodrigo, and Beck (2017) 

attempted to model IE and examined possible factors that predict the successful outcome of incubation. 

However, the study was limited to hand-crafted features from aggregated data which means that 

individual attempts comprising the 3 phases of IE were not analyzed in a fine-grained level and the 

actual activity during incubation were not taken into consideration. Thus, further analysis is needed to 

look at the large amount of unused data from the previous studies and come up with better features and 

model. 

The main objective of the study is to conduct a fine-grained level modeling of the incubation 

effect among students playing Physics Playground and further understand the factors that predict IE. 

Student interaction logs contain a rich amount of data that can be utilized to extract information on 

student actions and behaviors in each attempt. Specifically, this study would like to answer the 

following: 

(RQ1) What fine-grained features predict incubation effect? What are the features that more likely give 
a positive result during the post-incubation phase? What’s the difference between the actions of the 

students to solve level X during pre-incubation and during post-incubation? 

(RQ2) How will the extracted features perform against the hand-crafted features (Talandron et al., 2017) 

in predicting incubation effect? How does the model using hand-crafted coarse-grained features perform 

versus the model with fine-grained learned features? 

 

 

2. Physics Playground 

 
Physics Playground (PP), formerly known as Newton’s Playground, is a two-dimensional 

computer-based game designed for students in the secondary level to better understand the concepts of 

qualitative Physics. The game simulates how the physical objects operate in relation to Newton’s laws 

of motion: balance, mass, conservation and transfer of momentum, gravity, and potential and kinetic 

energy (Shute & Ventura, 2013). The game has different problems with varying levels of difficulty and 

solutions. The main objective of each problem is to guide a green ball to a red balloon. To solve each 

level, the players must draw objects (i.e., ramp, lever, pendulum, springboard) using the computer 

mouse and these objects become part of the game environment. Figure 1 (a) shows an example level of 

PP which requires a ramp to lead the ball to the balloon. All objects drawn obey the basic rules of 

physics relating to gravity and Newton’s three laws of motion (Shute & Ventura, 2013). Once the player 

draws a ramp, the ball will then follow its path until it reaches the red balloon as shown in Figure 1 (b). 

 

  
 

        (a) A level that requires a ramp   (b) Sample solution to a ramp problem 

 
Figure 1. A sample level in Physics Playground. 

 

When the student solves a level, he/she receives either a gold or silver badge. A badge is 

awarded if the student solves the level – a gold badge if the problem was solved using at or below a par 

number of objects determined by the game designers; otherwise, a silver badge is given. 

 



 

3. Methods 
 

3.1 Data  

 
The analyses for this study used a dataset collected from a total of 176 high school students in the 

Philippines: 29 from a public junior high school in Baguio City (School 1); 31 from a private university 

also in Baguio City (School 2); 56 from a private university in Cebu (School 3); and 60 from a private 

university in Davao City (School 4). These students were considered average in terms of their academic 

performance.  

The students were given an orientation to introduce them to Physics Playground and to explain 

the game mechanics. Before playing, they were asked to answer a pre-test which was comprised of 16 

multiple-choice type questions about simple machines and laws of Physics in relation to the learning 

objectives of PP. Then the students were given about 2 hours to play Physics Playground where their 

interactions with the game were automatically recorded into a log file. They were allowed to choose the 

problem they would like to solve, they could leave the problem, and return to it at a later time. After the 

session, the students answered a post-test which was also based on the topics covered in PP. 

While playing PP, student’s interactions with the game were automatically recorded along with 

each action’s time stamp. The actions recorded were divided into 4 categories: Menu Events, Level 

Events, Play Events, and Agent Events. Menu Events refer to interactions when the player is in the main 

menu of the game while Level Events are actions related to each individual level within a playground. 

Play Events are the player’s interactions within the PP environment once the player started to play a 

specific level. Agent Events refer to the interactions of and with the objects or simple machines drawn 

by the player to solve the level. These include the level, start time, end time, objects drawn, badge, etc. 

where we can derive other information as in prior work (Martinez et al., 2016; Palaoag, Rodrigo, & 

Andres, 2015; Palaoag, Rodrigo, Andres, Andres, & Beck, 2016; Talandron et al., 2017) such as attempt 

duration, number of restarts and revisits, sequence of levels, number of badges earned. 
 

3.2 Fine-Grained vs. Coarse-Grained Features 
 

To distinguish coarse-grained (Talandron et al., 2017) and fine-grained analysis, operationalizing IE in 

the PP interaction logs were done in a hierarchical manner. Figure 2 shows the levels of analysis as well 

as the relationship of the entities. The coarse-grained level analysis involved features from levels 1 to 3 

of the diagram and the fine-grained analysis will include features on levels 4 and 5. 

 

 
 

Figure 2. The levels of analysis. 

 

The data was filtered to only include the interaction logs of students who exhibited potential 

IEs. Unnecessary columns were then removed and only included the problem ID, series of actions taken 

to solve the problem, and the result which indicates whether the student solved the problem or not. The 
canonical solution to each problem which was the basis of the problem type was also integrated into the 

logs. 

 



3.3 Modeling 
 

To prepare the data for modeling using LSTM, it is essential to structure the data for the specification 

of the timestep and batch size such that the timestep corresponds to the number of actions to solve a 

problem and the batch size as the number of problems or attempts per student. Another step was the 

transformation of the data type from string to numeric. String data must be encoded as numbers to be 

used as input or output for machine learning and deep learning models and the Scikit-learn library has 

provided the tool to do this. Sklearn's LabelEncoder module finds all classes and assigns each a numeric 

id starting from 0. For the output labels, np.utils.to_categorical was used to convert array of labeled 

data (from 0 to nb_classes-1) to one-hot vector. 

The model using LSTM was developed using Keras, a high-level neural networks API on top 

of TensorFlow with Python as the underlying programming language. To realize the objectives, this 

study focused on the following training tasks: 

• Given a sequence of attempts for a series of problems, classify each attempt based on the following: 

• son – solved new (successfully solved the problem at first attempt) 

• unn – unsolved new (failed to solve the problem at first attempt) 

• sops – solved a problem that has already been previously solved 

• unps – failed to solve a problem that has already been previously solved 

• sopu-nb – no incubation, replayed and solved a previously unsolved problem  

• unpu-nb – no incubation, replayed and failed to solve a previously unsolved problem 

• sopu – revisited and solved a previously unsolved problem (IE-True) 

• unpu – revisited and failed to solve a previously unsolved problem (IE-False) 

The “sopu” corresponds to IE-True while “unpu” corresponds to IE-False. The analyses were 

focused on these 2 classes. The term “replay” means the player re-played the same level consecutively 

without interval while “revisit” means a “break” or interval occurred before the same level is played 

again. 

The input features include the time of the action, the problem ID, and the series of actions in 

the attempts to solve the problem. The output label was the result of each attempt which was coded 

based on the 8 classes described in this section. For this task, a one-layer deep LSTM was used. To 

predict the output label, the hidden state at the last timestep was passed through a fully connected layer 

and a subsequent softmax layer. The batch size used was the number of attempts per student which was 

91 and timestep was set to 100 so that the network would consider all the actions for each attempt as it 

backpropagates when calculating gradients for weight updates. The final number of epochs was set to 

200. The values of other hyperparameters followed the configuration described in section 3.3. A student 

level cross-validation was used which was to ensure that a student’s data was only either on the training 

set or the testing set. 

Another issue that had to be addressed was class imbalance. Majority (71%) were first attempts 

on a new problem and the remining 29% were divided into 3 types: 13% replay previously solved 

problems, 9% revisit previously unsolved problem (potential IE), 7% replay unsolved problems (no 

incubation). This was addressed using the sklearn.utils. class_weight. compute_class_weight from the 

Scikit-learn library which computes for the appropriate weight based on the given training data. The 

computed values were stored in a dictionary which was then implemented during training. A student-

level cross validation was done to ensure that each student’s data was either on the training set or the 

testing set.  

 

3.4 Analysis of Features 
 

The application of t-SNE (Maaten & Hinton, 2008) and X-means clustering algorithm as described in 

Wang et al. (2017) was done to map the input samples with the learned features. To answer the research 

questions previously stated, the data were analyzed as follows: 

RQ1: What fine-grained features predict incubation effect? The learned representations are 

expected to be features that predict performance. The features derived from the input data was 

visualized using t-SNE as well as the prediction results. Then, X-means algorithm was used to cluster 

the data points in order to identify distinct groups. Quantitative analysis was conducted on each cluster 



based on the features that could be derived from the LSTM input data to find significant differences or 

effect of these features on each cluster.  

RQ2: How will the extracted features perform against the hand-crafted features in predicting 

incubation effect? The performance of the model  and the coarse-grained features presented in 

Talandron, Rodrigo, and Beck (2017) were compared to the fine-grained model and the extracted fine-

grained features. 

 

 

4. Results and Discussion 
 

4.1 The Fine-Grained Model 

 
LSTM was used to model IE in a fine-grained level as described in section 3.3. A zero-padding 

technique was applied in order to achieve a uniform number of attempts per student which was used as 

the batch size during training and the same technique for the number of actions per attempt which was 

used the number of timesteps. The input vector has a total of 773,500 rows (85 students with 91 attempts 

each and each attempt with 100 actions). Model performance was measured based on the confusion 

matrix which is shown in Table 2 (recall = 91.62%, precision = 82.55%, f-score = 86.84%, kappa = 

0.821). 

 

Table 1 

Fine-Grained IE model confusion matrix 

 

Actual 
Predicted 

IE-True (sopu) IE-False (unpu) Others 

IE-True (sopu) 175 2 14 

IE-False (unpu) 15 95 22 

Others 22 36 3251 

 

Using t-SNE, both the actual and the predicted IE-True and IE-False instances were visualized 

on a two-dimensional plot. Several runs of t-SNE were conducted with varying values for perplexity 

and in order to decide on the most appropriate value, the one with the highest t-SNE nearest neighbor 

accuracy was selected. In this result, the perplexity of 20 yield the highest t-SNE nearest neighbor 

accuracy of 81%. The input data used in t-SNE includes all the features that could be derived from the 

LSTM input data and that could have been learned by the neural net such as time, problem, actions 

taken to solve the problem, duration of incubation, duration for each attempt, problem difficulty, 

productivity, and problem type. The t-SNE output reduced these features into two dimensions which 

were then the basis for the t-SNE plot. Figure 3 shows the t-SNE plot of IE-True (sopu) and IE-False 

(unpu) based on the actual (a) and prediction results (b).  

 

            
  (a) actual IE-True (sopu) and IE-False (unpu)          (b) predicted IE-True (sopu) and IE-False (unpu) 

  

Figure 3. The t-SNE plot of IE-True (sopu) and IE-False (unpu). 



Since the model’s recall was at 91.62%, it was expected that their t-SNE plot should look 

similar. More importantly, both plots show two apparent groups, one on the third quadrant of the plot 

which was composed of almost all IE-True instances, and one on the first quadrant which includes 

majority of IE-False but was mixed with some IE-True. In order to get the distinct clusters, we applied 

x-means clustering on the t-SNE results and then plot the clustering results on the t-SNE data. This was 

done on both the actual and predicted IE-True and IE-False as shown in Figure 4(a) and Figure 4(b), 

respectively. 

 

           
    (a) Clustering result of actual Potential IEs               (b) Clustering result of the predictions 

  

Figure 4. The clustering results of both actual IEs and predicted IEs 
 

 Based on the clusters of prediction results and referencing Figure 3(b) on Figure 4(b), Cluster 

1 is predominantly composed of SOPU predictions (IE-True). A quantitative analysis was done for all 

the features derived from the LSTM input data in order to extract distinct features for the clusters. As 

previously mentioned, these features include the time of the revisit, incubation duration, problem 

difficulty, student’s productivity, the problem type, and the different actions done to solve the problem. 

 

4.1.1 Time of Revisit and Problem Difficulty 
 

It was found that more potential IEs (revisit) occurred during the last 30 minutes of the session. 

However, when investigated in terms of how productive revisits were at each 30-min interval, it was 

found that more revisits at the later time resulted to IE-False. A t-test was conducted to compare the 

difference between the time of revisit in cluster 1 vs those in cluster 2. There was a significant effect of 

the time of revisit on the clusters at the p<0.05 level [F (1, 321) = 7.01, p = 0.008]. The IE incidence 

for each cluster in 30-minute bins is also shown in Figure 5. Since instances in cluster 1 were mostly 

successful IEs, it can be inferred that potential IEs in the early part of a time-limited session are more 

likely to be beneficial. 

 

 
Figure 5. Predicted revisit instances at each time interval from clusters 1 and 2 

 

 Also, from the coarse-grained IE model (Talandron et al., 2017), problem difficulty was a 

significant feature such that revisiting a problem with lower difficulty rate more likely results to IE-

True. This was also analyzed in a fine-grained level and the difference was significant on cluster 1 



(mean = 39.36%, sd = 16.64%) and cluster 2 (mean = 45.39%, sd = 17.33%) at the p<0.05 level [F (1, 

321) = 10.06, p = 0.002].  

 

4.1.2 Duration of Incubation 
 

The incubation duration between clusters were compared and a significant difference was found 

between cluster 1 (mean = 10.95, sd = 17.99) and cluster 2 (mean = 16.06, sd = 20.81) at the p<0.05 

level [F (1, 321) = 5.52, p = 0.02]. This finding is also consistent with the coarse-grained analysis where 

it was found that a lengthy incubation could lead to IE-False (Talandron et al., 2017) and specifically, 

incubation duration that was more than 40 minutes resulted to IE-False (Talandron and Rodrigo, 2018). 

 

4.1.3 Productivity Rate 
 

Another notable feature in predicting IE-True in the coarse-grained analysis (Talandron et al., 2017) 

was the student’s productivity which means how well the student was performing at the time of revisit. 

Similarly, a comparison was made in the fine-grained level analysis to see how this feature affected the 
clusters. This was computed as the number of problems solved over all attempts made at the time of 

revisit. The difference was significant between cluster 1 (mean = 64.48%, sd = 17.89%) and cluster 2 

(mean = 56.97%, sd = 19.75%) at the p<0.05 level [F (1, 321) = 12.30, p < 0.001]. This means that 

having been productive by the time of revisit would more likely lead to a positive revisit outcome. 

Figure 6 shows the potential IE instances in clusters 1 and 2 and the student’s productivity rates in 25% 

bins. 

 

 
Figure 6. Productivity of IE instances from clusters 1 and 2 

 

4.1.4 Problem Type 
 

The problem type is a binary feature which indicates whether the attempt preceding the revisit had a 

similar solution to the problem during the revisit. There were 208 potential IEs preceded by an attempt 

on a problem with a similar solution and 125 (60.10%) resulted to IE-True. In terms of its effect on 

clusters 1 and 2, the Chi-Square test of independence was conducted and found a significant effect, c2 

(1, N=323) =39.55, p<0.001, between the clusters and the problem type. This means, being preceded 

by a problem with a similar solution was considered as a significant factor in predicting IE-True. 

 

4.1.5 Actions 
 

There’s a total of 22 events or actions from the logs and some of these actions can be found on other 

games such as ‘click’, ‘pause’, ‘hover/preview tutorial’, ‘watch tutorial’, ‘erase’. Other actions are very 

specific to Physics Playground such as ‘collision’, ‘diver’, ‘draw pin’, ‘lever’, ‘pendulum strike’, 

‘springboard’, ‘ramp’, ‘stacking’, ‘stacking warning’, ‘draw freeform’.  

 The analysis for these actions was divided into three: 1) an analysis on the common game 

actions between cluster 1 and cluster 2; 2) an analysis on the common game actions between the pre-

incubation period and post-incubation period; and 3) an analysis on solution specific actions during the 

pre-incubation period and post-incubation period to explore whether there has been a change on the 



approach to solve the problem. For the common game actions, a comparison on the frequency of these 

actions between the clusters were analyzed and a significant effect, at p<0.05 level, was found on the 

incidence of pause, hover tutorial, and erase between cluster 1 and cluster 2 as shown in Table 3. 

 

Table 2 

Comparison of common game actions between clusters 1 and 2 

 

Actions Cluster 1 

(mean) 

Cluster 2 

(mean) 

F p 

Erase 10.89 6.55 7.77 <0.01 

Hover Tutorial 0.41 0.11 4.68 <0.05 

Pause 0.39 1.21 143.42 <0.001 

 
 Based on this, we can infer that higher incidence of erase in cluster 1 means better awareness 

when incorrect actions were made, lower incidence of pause can be an indication that they were more 

confident of what they’re doing and higher incidence of hover tutorial means they are making sure that 

they are drawing the object correctly. Further, a comparison of these actions between the pre-incubation 

and post-incubation period was conducted to see if there was a difference before and after incubation. 

The difference was significant for pause between cluster 1 pre-incubation (mean = 0.08) and cluster 1 

post-incubation (mean = 0.03) at the p<0.05 level [F (1, 381) = 109.19, p < 0.001]. It was also significant 

for erase, cluster 1 pre-incubation (mean = 0.03) and cluster 1 post-incubation (mean=0.05) at the 

p<0.05 level [F (1, 381) = 6.72, p = 0.009]. Third, solution specific actions were compared between 

pre-incubation and post-incubation and a significant difference, at the p<0.05 level, was found for ramp 

and springboard as shown in Table 4.  

 

Table 3 

Comparison of solution-specific actions between clusters 1 and 2 

 

Actions Pre-incubation 

(mean) 

Post-incubation 

(mean) 

F p 

Ramp 0.02 0.07 14.72 <0.001 

Lever 0.015 0.017 0.085 0.77 

Springboard 0.007 0.025 7.87 0.005 

Pendulum 0.010 0.014 0.88 0.35 

 

 With the significant difference on the frequency of these actions during the pre-incubation 

period and post-incubation period, it can be inferred that incubation has made an impact on how the 

students try to solve the problem during the revisit. 

 

4.2 Coarse-Grained Model vs Fine-Grained Model 

 
The findings were compared to establish consistency of results as well as the necessity of fine-grained 

analysis to improve model performance. All the significant features from the coarse-grained 

analysis(Talandron et al., 2017) are consistent with the extracted features in the fine-grained analysis 

which are the time of revisit, incubation duration, productivity before revisit, and problem difficulty. 

Aside from these, new fine-grained features were discovered during the analysis which are the problem 

type, common game actions and solution-specific actions which provided evidence that incubation 

improved students’ actions in their attempt to solve a previously unsolved problem after incubation. 

 The fine-grained model performed better in all metrics used (precision, recall, f-score, kappa) 

compared to the coarse-grained model as shown in table 5. There was a notable increase of 31.82% in 

precision and 5.97 in kappa. 

 

 



Table 4 

Comparison of model performance 

 

IE Model precision recall f-score kappa 

Coarse-grained model 

(Talandron et al., 2017) 

50.73% 89.61% 64.78% 0.224 

Fine-grained model 82.55% 91.62% 86.84% 0.821 

 

 This improvement could be attributed to the problem-level or attempt-level data that the fine-

grained level analysis was able to use. The difference between the student’s actions before and after 

incubation was a significant factor on the model’s prediction performance. 

 

 

5. Conclusion, Limitations, and Future Work 

 
This study investigated and modeled the incubation effect phenomenon among students playing an 

educational game in a fine-grained level. The initial investigation found that students’ IE success rates 

matched their non-IE success rates, implying that IEs may indeed benefit students who are stuck 

(Martinez et al., 2016). This study continued the work and answered the following: 

 RQ 1: What fine-grained features predict incubation effect? 

 The significant features found were time of revisit (low), duration of incubation (low), problem 

difficulty (low), student’s productivity at the time of revisit (high), similarity with the preceding 

problem. In terms of game actions, the following were discovered: erase (high), pause (low), hover 

tutorial (high). For problem specific actions, improvement in the student’s drawing of ramp and 

springboard were observed. 

 RQ 2: How will the extracted features perform against the hand-crafted features in predicting 

incubation effect? 

 The coarse-grained features (Talandron et al., 2017) that were manually engineered were 

consistent with the extracted features but action-level features were also discovered providing more 

evidence on the improvement of students’ actions to solve the problem after incubation. Moreover, a 

notable increase of 31.82% in precision (82.55% vs 50.73% of the coarse-grained model) and 5.97 in 

kappa (0.821 vs 0.224 of the coarse-grained model) were achieved when compared to the previous 

model which used aggregated data. 

 This study contributes to researches using computer-based learning environments in studying 

phenomenon of a similar construct with IE since interaction logs of test subjects can be recorded 

automatically and hence more accurately. Second, findings quantified the pedagogical practice where 

teachers instruct students who are stuck at a problem to skip it and go back to it at a later time. It showed 

that incubation can be an effective technique in solving problems where activities performed during the 

break are similar or related tasks and the features extracted from this study could be translated to design 

features that could be used in other educational games to improve students’ performance. Third, this 

study contributed to the growing applications of deep learning on educational data specifically by 

analyzing interaction logs from a computer-based learning environment to improve predictive models 

of behaviors and phenomena in the context of education. It has also shown that combining deep learning 

with other machine learning techniques such as dimensionality reduction, visualization, and clustering, 

can pave way to understand the learned features of a neural network.  

 Based on the limitations of the data collection method which used stealth assessment, another 

experiment can be recommended which would involve a control group and an experimental group 

where one group is instructed and allowed to incubate and other is not to further study the benefits of 

incubation versus no incubation in an experimental setup. Second, the features that predict IE could be 

translated into a game design such as rules or game mechanics of an educational application or software 

to further study the integration of IE as a pedagogical strategy. 
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