
So, H. J. et al. (Eds.) (2020). Proceedings of the 28th International Conference on Computers in Education.

Australia: Asia-Pacific Society for Computers in Education

Using Log and Discourse Analysis to Improve

Understanding of Collaborative Programming

Bernard YETTa*, Caitlin SNYDERa, Ningyu ZHANGa, Nicole HUTCHINSa, Shitanshu

MISHRAa & Gautam BISWASa
aVanderbilt University, USA

*bernard.h.yett@vanderbilt.edu

Abstract: The importance and ubiquity of computing and computational thinking (CT) is

leading to re-design of K-12 curricula and the development of appropriate platforms to support

computer science instruction. One such environment is the block-based, synchronous

programming environment, NetsBlox, that allows for real-time collaboration amongst students.

This work presents a novel combination of discourse and activity log analyses to study the

collaborative behaviors of K-12 students as they worked on a week-long cybersecurity

curriculum. Groups of students were assessed based on pre-post-test learning gains in

cybersecurity and CT. We analyze the differences between the collaborative behaviors and

discourse of high and low performing groups using case study and differential sequence mining

analyses to characterize productive and unproductive collaborative problem solving in

programming tasks.

Keywords: computer science education, data-driven analysis, collaboration, robotics

1. Introduction

Collaboration is considered a key computational practice (College Board, 2020) and offers several

benefits worthy of further exploration. Previous work has shown that collaboration provides social

support, thus allowing a group to learn from each other and overcome difficulties (Saenz-Otero et al.,

2010). Werner et al. (2012) found a significant positive relationship between time spent programming

with a partner and assessment scores. Despite these, there is evidence of problems that can arise while

students work together on programming projects. When pairing students with different experience

levels, the more knowledgeable student often assumes full control and leaves their partner confused and

disengaged (Braught, MacCormick, & Wahls, 2010). Working with others can be a frustrating,

challenging experience that may ultimately undermine motivation (Rogat, Linnenbrink-García, &

DiDonato, 2013).

Taken together, it becomes important to design environments that guide students towards the

benefits of collaboration while avoiding the pitfalls. To accomplish this, we need an improved

understanding of the problem-solving processes groups employ, specifically the interweaving of dialog

and actions as they work on their programming tasks. This may reveal how students develop an

understanding of the desired computer science concepts and practices, while also exposing their

difficulties and how they may overcome them via collaboration. Each mode of interaction requires

unique analysis techniques in order to uncover the collaborative processes at play and ensure the success

of each group. Our specific approach to collaborative programming analysis integrates discourse,

learning, and log data, a combination that is still under-researched.

Cybersecurity was the primary focus of this intervention. It has become an important component of

computer science (CS) curricula, but presents complex concepts and can be difficult to grasp when not

situated within meaningful contexts (Thompson et al., 2018). Robotics platforms have been successful

in delivering cybersecurity curricula to K-12 students (Karaman et al., 2017; Lédeczi et al., 2019; Yett

et al., 2020a). These platforms allow students to collaborate to solve larger, more complex problems

through co-construction of knowledge (Fischer, Bruhn, Gräsel, & Mandl, 2002; Hmelo-Silver, 2003).

In this study, students used the NetsBlox (Broll et al., 2017) environment to develop secure robot

programs. NetsBlox features a collaborative editor where students can code together in a shared and

synchronized workspace while working across multiple computers. Students were co-located and used

their own laptops as they developed their robot programs, dynamically choosing their own roles in

accord with findings related to potential issues of forced turn-taking (Tsan, Lynch, & Boyer, 2018).

In order to investigate the collaborative potential of NetsBlox as a flexible, synchronous, co-located

platform, we target the following research questions: (1) What programming behaviors as observed via

differential sequence mining distinguish groups of students that are successful in the assigned tasks

versus those that are not? (2) How did the relative presence or absence of collaboration during a

specific project affect student understanding as indicated by learning gains?

RQ1 provides insights into the collaborative programming process students used during the

intervention. We hypothesize that groups with greater shared understanding of the task implemented

patterns demonstrating systematic development of their code. RQ2 studies the impact of collaboration

on learning performance on specific tasks. We hypothesize that groups with greater interactive

discourse demonstrated improved collaborative processes targeting a shared understanding.

2. Background

Collaboration is “a coordinated, synchronous activity that is a result of a continuous attempt to

construct and maintain a shared conception of a problem” (Roschelle & Teasley, 1995, p.70).

Successful collaboration requires the co-construction of knowledge (Fischer et al., 2002; Hmelo-Silver,

2003) between group members along with interactions on progress monitoring, providing constructive

feedback, and encouraging the contribution of ideas (Garrison & Akyol, 2013; Grau & Whitebread,

2012). To increase understanding of collaborative problem-solving (CPS) processes, researchers have

developed several methodologies, such as after-the-fact reviews (Zimmerman & Pons, 1986) and

concurrent think-alouds (Branch, 2013) to gain a deeper understanding of problem-solving processes.

However, these methodologies have limitations, such as determining if the student is actually

reporting what they thought at the moment and not inferring after the fact, unintentionally biasing the

students with leading questions and interrupting the student’s thought processes (Branch, 2013;

Zimmerman & Pons, 1986). To overcome such limitations, researchers have utilized students’ naturally

occurring collaborative dialogue to provide insight into their collaborative problem-solving processes.

Tsan et al. (2018) performed a qualitative analysis of pairs of students working collaboratively,

including observations of how students claimed roles and how equally distributed dialogue was among

group members. Zakaria et al. (2019) compared collaborating students’ discourse when they either

shared a computer or worked side-by-side on separate computers on a shared project, finding no

significant differences in the quantity of collaborative talk between the two configurations.

While this dialogue is a rich resource, analysis can be time-intensive and may miss out on relevant

information. For example, students may apply signifiers such as “this” or “that” in their discourse,

referring to specific program components that are not immediately clear when looking at discourse

transcriptions alone. Including students’ action logs can overcome such limitations. Kinnebrew,

Segedy, and Biswas (2017) contributed a framework combining analytic measures (model-driven

metrics) with patterns derived from students’ action sequences (pattern mining) during model building

tasks to understand students’ problem-solving processes and the difficulties they face when working in

open-ended learning environments (OELEs). Werner, McDowell, and Denner (2013) provided a tool to

combine low-level logs into interpretable problem-solving strategies.

However, students typically share one computer during co-located collaborative programming, and

this makes it difficult to distinguish one student’s actions from another. A multimodal analysis approach

that includes their discourse as well as individual actions in the system allows for a deeper analysis of

collaborative problem solving. SLAM-KIT (Noroozi et al., 2019) is recent work aimed at aiding

researchers as they combine multiple data streams and seek to better understand collaborative learning.

Grover et al. (2016b) present a pilot study for multimodal analysis within a collaborative setting.

Vrzakova et al. (2020) considered screen activity, discourse, and body motion as unimodal primitives

and extended them to their multimodal combinations.

Multimodal analysis creates an opportunity to further understand collaborative programming.

Research on students’ collaborative programming has mostly focused on pair programming. However,

some take-aways can apply to other forms of collaborative programming. Shi, Shah, Hedman, and

O’Rourke (2019) describe effective collaboration, in the context of programming, occurring when all

group members are actively involved in all aspects of the problem process, particularly the construction

of the solution. During successful collaboration, group members share the responsibilities of discussion,

planning, and implementation. Additionally, collaborative programming can improve individual

programming skills more than solo programming (Braught, Wahls, & Eby, 2011). In this research, we

aim to extend our understanding of collaborative programming through the systematic integration of

discourse and log analysis to determine how these collaborative factors impact group learning.

3. Methods

3.1 NetsBlox and RoboScape

NetsBlox, an extension of the Snap Programming language (http://snap.berkeley.edu/), is a visual

programming environment created to teach students about distributed programming (Broll et al., 2017).

NetsBlox allows projects to be shared among group members so that they can synchronously edit and

execute various sections of their programs. This allows students to flow between different roles and

maintain agency over their own work. Student actions are saved to a database as a particular action type,

along with metadata such as the user id, project id, and Unix timestamp. This allows for the compilation

of a comprehensive timeline of actions from a student and group perspective.

Communication with a physical robot is enabled through Remote Procedure Calls (RPC). One such

RPC, RoboScape (Lédeczi et al., 2019), has a set of specific commands that students can use to

communicate with Parallax robots nearly instantaneously. RoboScape, like Zero Robotics (Saenz-Otero

et al., 2010) and others, uses a robotics-based framework as an entertaining and educational approach

to encourage collaboration through competition. Students work together to strategize for each specific

competition and troubleshoot errors in their programs, observing any changes in real-time.

3.2 Study Design and Analysis Framework

Thirty-eight high school students spread across two, week-long summer camps completed our

intervention using the NetsBlox and RoboScape environment. Like Karaman et al. (2017), we

emphasized robotics software over hardware while incorporating project-based learning and

collaborative requirements within a module-based structure. Day one began with an introduction to the

NetsBlox environment to establish a baseline of programming proficiency. Day two was the first

collaborative day for students. They primarily created simple manual driving programs using

RoboScape to increase familiarity with the system and grow comfortable working as a team. Next, they

progressively studied more complex cybersecurity techniques, with groups implementing both attack

and defense strategies. This culminated in a final competition that required both collaboration and

programming skills to succeed while fending off cyber-attacks (Lédeczi et al., 2019; Yett et al., 2020a).

Table 1. Our Analysis Framework

 Learning
Individual

Action Analysis
Sequence Analysis CPS Discourse

Desired

Characteristic

Indicative of

Shared

Understanding

Learning gains

experienced by all

group members

Equal distribution

of programming

activities

Utilization of strategies

identified as supporting

program development

Predominantly interactive

discourse for a shared

understanding of the

problem

Analysis –

Entire

Intervention

Average normalized

change of results in

CT and

cybersecurity

Actions taken by

each group

member, Gini

coefficient

Differential sequence

mining of full sequence

of actions

N/A

Analysis – Tug

of War project

Average normalized

change of results

related to project

Actions taken by

each group

member, Gini

coefficient

Markov chains of actions

taken during the project

Application of framework

to the discourse of

students during the project

The students separated into dyads and triads, choosing their own groups. To be considered a group

for this analysis, the students had to work together for at least three of the four collaborative days of the

intervention. Each student also had to complete the pre- and post-tests. Twelve groups were included –

six dyads and six triads - spread throughout the two weeks of the camp. The framing of our collaborative

analysis approach is presented in Table 1 above.

Data logged during the intervention was queried from the NetsBlox database. We extracted the

action data from the database and categorized them as Solution Construction (SC) and Solution

Assessment (SA) actions (Kinnebrew et al., 2017). SC actions were subdivided into (1) FillField actions

when students changed the values of variables, lists, or robot commands; (2) AddBlock or (3)

RemoveBlock actions when students added a new block to their program or deleted an existing block;

(4) ConnectBlock or (5) DisconnectBlock actions when students attached a block to existing blocks or

removed a block from an existing sequence of blocks, respectively. SA actions were likewise split into

(1) StartSimulation actions when students clicked on the “green flag” within the NetsBlox environment

to begin running a full program or (2) StartScript actions when students executed only a small portion

of their code. Additionally, Idle events occurred when students within a group had a gap of 160 seconds

or more between two actions. This value was determined by the 95th percentile of the time intervals.

We applied collaborative discourse analysis (Snyder et al., 2019; Snyder, Hutchins, Biswas, &

Grover, 2019) superimposing the ICAP (Interactive-Constructive-Active-Passive) framework of

engagement modes (Chi & Wylie, 2014) onto the Weinberger & Fischer (2006) framework component

of social modes during knowledge construction. This combined framework allows for analysis of

students’ engagement as well as their social modes. The resulting framework consists of eight

components - we consider six of them within our analysis. (1) Interactive conflicted-oriented consensus

building (ICO) occurs when most group members are participating in the model building and are

disagreeing about what needs to be done. (2) Interactive integration-oriented consensus building (IIO)

occurs when most group members are participating but no member is taking a strong position on what

the next step should be. (3) Interactive quick consensus building (IQ) occurs when most group members

are participating in the model building and one member’s suggested contribution is accepted with little

to no discussion. (4) Interactive elicitation (IE) occurs when most group members are participating in

the model building and one student questions the group. (5) Constructive externalization (CEX) occurs

when only one group member is participating in the model building and narrates their actions and

thought processes. (6) Constructive elicitation (CEL) occurs when only one student is participating and

asks the other non-participating group members a question. Inter-rater reliability was checked by two

coders on a 36-utterance segment of discourse and resulted in a Cohen’s kappa value of 𝑘 = 0.73,

indicating good agreement.

We answered RQ1 via the “Learning” and “Sequence Analysis” columns of our framework (Table

1). The pre- and post-tests (targeting CT and cybersecurity) were graded using normalized change

(Marx & Cummings, 2007) to measure the growth from pre- to post-test for each individual student.

These were combined to provide an average normalized change (ANC) based on the number of students

in the group, leading to a median split into “Large Improvement” (LI) and “Small or No Improvement”

(SNI) groups. We applied Differential Sequence Mining (DSM) to evaluate key strategies implemented

by LI and SNI groups (Kinnebrew, Loretz, & Biswas, 2013; Kinnebrew et al., 2015). DSM compares

the instance support, or i-support (I-S), of the compared groups. I-S is defined as the average number

of times the pattern was used by each group.

A competition from day three of the intervention called “Tug of War” (ToW) was chosen for further

analysis drawing from both the action logs and the discourse of students. In this competition, students

fought for control over a robot. Each group would simultaneously send commands to a single robot,

attempting to maneuver it towards opposing objectives. This project was chosen because of its highly

collaborative nature, as teams of students had to program and strategize together in order to succeed. It

was also chosen due to the relation between the sections of code often used by successful teams and

two questions on the pre-post-tests related to loops and denial of service attacks. Students learned about

and implemented denial of service attacks - and defenses for such attacks - in preparation for the ToW

competition, while loops were a necessary component of these attacks.

To answer RQ2 within the ToW context, we required all four columns of the framework presented

in Table 1. We selected two groups for analysis – one LI group and one SNI group. Log data was used

to compute the Gini coefficient (Dorfman, 1979) as a metric to evaluate individual contributions to

group performance. Gini coefficients indicate the share of actions taken by each student, with smaller

values corresponding with more equally divided actions. We computed ANC on the specific ToW-

related questions as well as determining the action counts (adjusted for number of group members and

the half-day length of the project) and Gini coefficient during this time. We also generated Markov

chain (MC) models (Russell & Norvig, 2003) with students’ sequences of log actions to analyze overall

group programming sequences. Each state in the state space is represented by an action which occurred

at time t, and a transition probability indicates the likelihood for another action to occur at time t+1 with

the fitted MC model. Finally, we manually applied our collaborative discourse framework to the

discussions of the chosen groups during this project, resulting in counts from each category as well as

specifically highlighted discussions related to the programming strategies of each group.

4. Results

Summative results indicated learning gains across CT and cybersecurity (Yett et al., 2020a). Further

analysis revealed relationships between average normalized change and results from action log data,

the strongest of which corresponded to solution construction actions (Yett et al., 2020b).

4.1 RQ1: What programming behaviors as observed via differential sequence mining (DSM)

distinguish groups of students with large improvements during the intervention versus those

without?

Using the DSM method, we found action sequence patterns that had statistically significant differences

in the instance support (I-S) metric between “Large Improvement” (LI) and “Small or No Improvement”

(SNI) groups. Table 2 lists the patterns and the DSM results ranked by the effect size of the differences.

The threshold of the s-Support (percentage of groups supporting this pattern) of the DSM was set at the

80% level, and there was no gap allowed between actions.

Table 2. DSM Results

 Pattern I-S

(LI)

I-S

(SNI)

p-

value

Effect

Size

1 ConnectBlock x 9 1.3 4.2 0.02 1.69

2 StartScript, DisconnectBlock, StartScript, RemoveBlock 1.2 0.2 0.02 1.65

3 StartSimulation, DisconnectBlock 6.0 16.7 0.03 1.62

4 StartSimulation x 6 4.0 17.8 0.04 1.54

5 FillField, StartScript, FillField, StartScript, ConnectBlock 1.8 0.7 0.03 1.49

SNI groups were more likely to perform a long series of edits to their models. The pattern

ConnectBlock × 9 (pattern 1) appeared in 100% of the SNI groups, who also had much larger I-S of

this pattern (4.2 instances per group). This depth-first programming approach as opposed to

programming in parts has been reported in the literature (Grover, Bienkowski, Niekrasz, & Hauswirth,

2016). Secondly, SNI groups used more solution assessment (SA) actions overall, especially the

StartSimulation action once or multiple times in succession (e.g. pattern 4). Though SA actions offer

important feedback to construct models effectively, their excessive use implies running simulations

without modifications to the models, which indicates an inability to comprehend the information

provided by simulations and was linked to SNI students’ overall poorer learning performance.

LI groups showed a more systematic programming approach. Patterns 2 and 5 both could indicate

productive troubleshooting behaviors of students testing new blocks or variable values. This is further

established by the fact that although SNI groups implemented pattern 3 more (which is similar to the

initial sequence of pattern 2), the LI groups may have done so in a more systematic way, as they played

the simulation, disconnected a block that may have contained an error, played again to test, and

(presumably correct in their hypothesis) removed the block. We hypothesize that the increased use of

pattern 3 by SNI groups was due to unsystematic debugging methods used to identify code errors, an

indication of ineffective trial-and-error approaches (Murphy et al., 2008). Pattern 5 shows these LI

groups changing variable values (FillField) followed by testing those changes depending on the current

task at hand (StartScript) and adding the block they were modifying to the full program (ConnectBlock).

4.2 RQ2: How did the relative presence or absence of collaboration during a specific project affect

student understanding as indicated by learning gains?

Our case study compares the discourse and log data of an LI group (Group 7) to a SNI group (Group

12) during the Tug of War (ToW) task.

4.2.1 Group 7

Group 7 (G7) was a dyad that worked together from Day 2 through Day 4. They were average in terms

of Gini coefficient (0.19) and total actions taken per student per day (364), indicating that they evenly

contributed to the projects. They also showed the most improvement among any groups with an average

normalized change (ANC) of 0.92. Their results during ToW were similar to their overall scores, with

an adjusted 321 actions, Gini coefficient of 0.19, and ANC of 1 (as each student began with missing at

least one of the questions on the pre-test but each answered the questions correctly on the post-test).

G7 implemented a few sequences (Figure 1) that relate to our findings from Section 4.1. For

instance, transitions such as FillField to StartScript may be associated with the productive

troubleshooting behaviors described. They also frequently transitioned between FillField and

StartSimulation, which indicated a debugging strategy by tweaking the parameters between tests. This

model also indicates potentially new troubleshooting techniques, such as running an individual script

for local testing followed by running the entire program. Overall, the group exhibited a variety of

behaviors depending on the current needs of the project, with at least one non-recursive transition out

of each state. One possible cause for concern is the high likelihood of Idle to StartScript, which could

indicate a return to the program after some time spent off-task and an immediate test of a feature that

had already been attempted unsuccessfully. However, this may also relate to discussion time and the

running of the simulation for further verification. Additionally, students in this group had a 38%

likelihood of transitioning from AddBlock to RemoveBlock. Though this is not necessarily indicative of

mistakenly adding a block only to remove it, it could signify program changes without proper testing.

Figure 1. Markov Chain Results from Group 7

G7 demonstrated predominantly interactive discourse during programming strategy time segments

(Table 3). Coded collaborative discourse indicated that only 32% of utterances coded were constructive,

with the group’s discourse targeting mainly interactive integration-oriented consensus building (IIO)

and interactive elicitation (IE) in developing their models. In the provided example, group members

used explanatory words such as “because” that indicate the group’s ability to reason about their

programming actions. This coincides with the literature in that group reasoning and explanatory process

are supportive of developing a shared understanding (Fischer et al., 2002; Hmelo-Silver, 2003). Both

students logically contributed approximately equally to all Interactive discussions, as interaction is

required to achieve such a coding. However, G7-S2 otherwise dominated the conversation, spending

more time in a Constructive state attempting to engage their partner while G7-S1 responded tersely or

not at all. G7-S2 also commonly explained their programming and competition strategies to G7-S1 and

several outsiders to the group, resulting in high quantities of constructive externalization (CEX).

Table 4. Excerpt from Group 7 Highlighting their use of Programming Strategy

Student Discourse CPS Code

S1 "my sent" isn't working ICO

S1 what did you do? ICO

S2 me? ICO

S1 why are all these right there ICO

S2 because they're for the sent commands ICO

S1 why are they under forwards (custom blocks) ICO

S2
they're under there so that when we send a command it changes "my

sent". I put them there for a reason
ICO

S1 well "my sent" is going but the "sent" overall isn't changing ICO

S2 no it does see, "change sent by 1" right there ICO

S1 no, ok. that's not changing. neither is "my sent" ICO

S2 where is our robot? there it is IIO

S1 "sent" itself is not changing. right there. the overall "sent" IIO

S2 mine is IIO

S1 but "my sent" is changing IIO

4.2.2 Group 12

Group 12 (G12) was a triad that worked together from Day 2 through Day 5. They were average in

terms of Gini coefficient (0.20) but took the fewest actions (229) and were the only group to regress

from pre- to post-test (ANC = -0.08). At an individual level, two students recorded ANC’s of 0, while

one recorded a -0.33 – an additional positive consideration is that the regressing student started with a

perfect score and another student only missed one question on each of the pre- and post-tests. Though

they took a similar number of actions during ToW after accounting for the length of the session (209),

their actions were less evenly divided than usual (Gini = 0.32). Despite this, they saw some

improvement in the ToW-related pre-post questions (ANC = 0.67), all from the growth of one student

as the other two had answered both questions correctly on the pre-test.

Figure 2. Markov Chain Results from Group 12

An immediate cause for concern upon examination of Figure 2 is the high likelihood of repeated

StartSimulation (89%) and StartScript (70%) actions. This coincides with our finding in Section 4.1

demonstrating that SNI groups were likely to implement long sequences of SA actions. Some of this

can be explained by the nature of the task, as students often needed to execute at least a few scripts (or

the full simulation) in sequence in order to perform well. However, usage at this magnitude indicates

repeated examination of the impact of one or a few changes without any modifications in between. This

group displayed some positive attributes as well. For example, they rarely transitioned from AddBlock

to RemoveBlock or RemoveBlock to RemoveBlock, instead showing the desired behavior of StartScript

following these changes to their program. On the other hand, the model edit actions and the simulation

actions were disjoint: unlike that of Group 7, the MC model of this group had no connection between

StartSimulation to any model edit action, and the ConnectBlock to StartScript link that is an important

part of a debugging strategy was missing. As a result of this disjoint modeling and testing behavior,

this group of students did not seem to be able to build and modify the ToW model successfully.

G12’s discourse (Table 4) is defined by significant use of constructive discourse with little to no

explanations for programming changes. For instance, S1 says “as long as you use that to move then we

shouldn't get locked out,” with no reasoning. Overall, 45% of the group’s coded utterances were

constructive, compared to G7’s 32%. Of the interactive discussions, the group implemented mainly IE,

in which one student questions the group. G12-S1 exhibited similar tendencies to G7-S2, taking on a

leadership role and generating more discussion than their peers. Likewise, G12-S2 was similar to G7-

S1, still contributing to the programming process but not as frequently. One group member, S3, rarely

participated in discussions (accounting for less than 10% of the group’s coded utterances). Overall Gini

data for the group does indicate that all students normally participated somewhat evenly, so this could

just be an outlier caused by external factors upon G12-S3.

Table 4. Excerpt from Group 12 Highlighting their use of Programming Strategy

Student Discourse CPS Code

S1 as long as you use that to move then we shouldn't get locked out ICO

S2 It’s not working ICO

S1 Okay [name] CEX

S1 so CEX

S1 I set this to number 2 CEX

S2 okay CEX

S1 So when I press 2 CEX

S2 Press 2 CEX

S1 Actually wait we don’t need number 2 that won’t work. We need the flag CEX

S2 The flag? CEL

S1 And it needs to be a forever loop CEL

5. Discussion and Conclusion

At an overall level, a few characteristics stand out as being common between the two groups. They

spent an approximately equivalent amount of their conversation time on interactive conflicted-oriented

consensus building (ICO) (26 for G7 and 23 for G12). Though this behavior is argumentative in nature,

at these low levels it can often be beneficial in terms of an improved shared understanding and moving

the project forward (Weinberger & Fischer, 2006). The two groups also displayed a similar quantity of

each kind of constructive discourse and an almost complete lack of interactive quick consensus building.

On the other hand, G7 conducted almost twice as many IE exchanges than their counterparts in G12

(110 to 66) along with almost four times as many cases of IIO (81 to 22). Overall, G7 displayed almost

entirely positive features from the framework established in Table 1, learning together and showing

their collaborative skills through Individual Action Analysis, Sequence Analysis, and Collaborative

Problem-Solving (CPS) Discourse Analysis. On the other hand, despite some promising trends in

Sequence Analysis and Learning during Tug of War (ToW), G12 appeared to struggle to work together

and reach the desired level of achievement.

The combination of NetsBlox and RoboScape provides a convenient venue for studying

collaborative programming. We contributed new findings in the analysis of programming actions taken

by students while collaborating, considering both the distribution of actions amongst group members

and the full combined sequence of actions of the group. We also used the available data to highlight

two groups as they interacted during a collaborative task. Each of these groups showed Interactive

behaviors and students filling specific collaborative roles even without the assignment of predefined

roles. The dyad was more successful in terms of sharing actions and showing improvements from pre-

post, while the triad seemed to leave one student behind and struggle more. Taken together, these groups

indicate that collaboration on the ToW project could have some impact on pre-post results. However, a

more complete dataset would be necessary to validate this claim after addressing a few shortcomings.

One limitation of the system is that network issues can lead to interruptions in collaboration as

projects become desynchronized; an integrity check to ensure consistency between the distributed

applications could help mitigate this issue. We also allowed groups to choose their own members,

possibly skewing results as friends teamed up and worked well together while students that did not

know each other had to build their relationship. To somewhat mitigate this disadvantage, lectures on

collaboration (Karaman et al., 2017) would be a welcome addition. A final area for improvement is in

collecting audio/visual data throughout the intervention, as problems such as microphones being too far

away from students and students manually canceling recordings caused us to lose some or all data for

certain groups. The combination of these and other factors forced the decision to compare a dyad and

triad for our case studies. Ideally, we would compare only dyads or only triads for consistency. We plan

to remedy the discussed limitations and introduce additional analysis methods in order to progress the

understanding of the effectiveness of our platform.

Acknowledgements

This material is based in part upon work supported by National Security Agency Science of Security

Lablet H98230-18-D-0010 and National Science Foundation grants CNS-1644848, CNS-1521617, and

DRL-1640199. Any opinions, findings, and conclusions expressed in this material are those of the

author(s) and do not necessarily reflect the views of the US Government.

References

Branch, J. L. (2013). The Trouble with Think Alouds: Generating Data using Concurrent Verbal Protocols. In

Proceedings of the Annual Conference of CAIS.

Braught, G., MacCormick, J., & Wahls, T. (2010, March). The Benefits of Pairing by Ability. In Proceedings

of the 41st ACM Technical Symposium on Computer Science Education (pp. 249-253).

Braught, G., Wahls, T., & Eby, L. M. (2011). The case for pair programming in the computer science classroom.

ACM Transactions on Computing Education (TOCE), 11(1), 1-21.
Broll, B., Lédeczi, Á., Volgyesi, P., Sallai, J., MarÓti, M., Carrillo, A., ... & Lu, M. (2017, March). A Visual

Programming Environment for Learning Distributed Programming. In Proceedings of the 2017 ACM

SIGCSE Technical Symposium on Computer Science Education (pp. 81-86).

Chi, M. T. H., & Wylie, R. (2014). The ICAP Framework: Linking Cognitive Engagement to Active Learning

Outcomes. Educational Psychologist, 49(4), 219-243.

College Board. AP Computer Science Principles Curriculum Framework. 2020.

Dorfman, R. (1979). A Formula for the Gini Coefficient. The Review of Economics and Statistics, 146-149.
Fischer, F., Bruhn, J., Gräsel, C., & Mandl, H. (2002). Fostering collaborative knowledge construction with

visualization tools. Learning and Instruction, 12(2), 213-232.
Garrison, D. R., & Akyol, Z. (2013). The Community of Inquiry Theoretical Framework. In Handbook of Distance

Education 3 (pp. 104-120).
Grau, V., & Whitebread, D. (2012). Self and social regulation of learning during collaborative activities in the

classroom: The interplay of individual and group cognition. Learning and Instruction, 22(6), 401-412.
Grover, S., Bienkowski, M., Niekrasz, J., & Hauswirth, M. (2016, April). Assessing Problem-Solving Process at

Scale. In Proceedings of the Third (2016) ACM Conference on Learning @ Scale (pp. 245-248).
Grover, S., Bienkowski, M., Tamrakar, A., Siddiquie, B., Salter, D., & Divakaran, A. (2016, April). Multimodal

Analytics to Study Collaborative Problem Solving in Pair Programming. In Proceedings of the Sixth

International Conference on Learning Analytics & Knowledge (pp. 516-517).
Hmelo-Silver, C. E. (2003). Analyzing collaborative knowledge construction: Multiple methods for integrated

understanding. Computers & Education, 41(4), 397-420.
Karaman, S., Anders, A., Boulet, M., Connor, J., Gregson, K., Guerra, W., ... & Vivilecchia, J. (2017, March).

Project-Based, Collaborative, Algorithmic Robotics for High School Students: Programming Self-Driving

Race Cars at MIT. In 2017 IEEE Integrated STEM Education Conference (ISEC) (pp. 195-203). IEEE.
Kinnebrew, J. S., Loretz, K. M., & Biswas, G. (2013). A Contextualized, Differential Sequence Mining Method

to Derive Students’ Learning Behavior Patterns. JEDM | Journal of Educational Data Mining, 5(1), 190-

219. https://doi.org/10.5281/zenodo.3554617

Kinnebrew, J. S., Segedy, J. R., & Biswas, G. (2017). Integrating Model-Driven and Data-Driven Techniques for

Analyzing Learning Behaviors in Open-Ended Learning Environments. IEEE Transactions on Learning

Technologies, 10(2), 140-153.
Lédeczi, Á., MarÓti, M., Zare, H., Yett, B., Hutchins, N., Broll, B., ... & Koutsoukos, X. (2019, February).

Teaching Cybersecurity with Networked Robots. In Proceedings of the 50th ACM Technical Symposium on

Computer Science Education (pp. 885-891).
Marx, J. D., & Cummings, K. (2007). Normalized Change. American Journal of Physics, 75(1), 87-91.
Murphy, L., Lewandowski, G., McCauley, R., Simon, B., Thomas, L., & Zander, C. (2008). Debugging: the Good,

the Bad, and the Quirky--a Qualitative Analysis of Novices' Strategies. ACM SIGCSE Bulletin, 40(1), 163-

167.
Noroozi, O., Alikhani, I., Järvelä, S., Kirschner, P. A., Juuso, I., & Seppänen, T. (2019). Multimodal data to design

visual learning analytics for understanding regulation of learning. Computers in Human Behavior, 100, 298-

304.
Rogat, T. K., Linnenbrink-García, L., & DiDonato, N. (2013). Motivation in Collaborative Groups. International

Handbook of Collaborative Learning, 250-267.
Roschelle, J., & Teasley, S. D. (1995). The Construction of Shared Knowledge in Collaborative Problem Solving.

In Computer Supported Collaborative Learning (pp. 69-97). Springer, Berlin, Heidelberg.
Russell, S. J. and Norvig, P. (2002). Artificial Intelligence - A Modern Approach, 2nd Edition. Prentice

Hall Series in Artificial Intelligence. Prentice Hall.
Saenz-Otero, A., Katz, J., Mohan, S., Miller, D. W., & Chamitoff, G. E. (2010, March). ZERO-Robotics: A

Student Competition Aboard the International Space Station. In 2010 IEEE Aerospace Conference (pp. 1-

11). IEEE.
Shi, J., Shah, A., Hedman, G., & O'Rourke, E. (2019, May). Pyrus: Designing A Collaborative Programming

Game to Promote Problem Solving Behaviors. In Proceedings of the 2019 CHI Conference on Human

Factors in Computing Systems (pp. 1-12).
Snap!: a Visual, Drag-and-Drop Programming Language. (n.d.). Retrieved from

http://snap.berkeley.edu/snapsource/snap.html.
Snyder, C., Hutchins, N., Biswas, G., Emara, M., Grover, S., & Conlin, L. (2019, June). Analyzing Students’

Synergistic Learning Processes in Physics and CT by Collaborative Discourse Analysis. In 13th

International Conference on Computer-Supported Collaborative Learning (pp. 360-367).
Snyder, C., Hutchins, N., Biswas, G., & Grover, S. (2019, June). Understanding Students’ Model Building

Strategies Through Discourse Analysis. In AIED 2019: International Conference on Artificial Intelligence

in Education (pp. 263-268). Springer, Cham.
Thompson, J. D., Herman, G. L., Scheponik, T., Oliva, L., Sherman, A., Golaszewski, E., ... & Patsourakos, K.

(2018). Student Misconceptions about Cybersecurity Concepts: Analysis of Think-Aloud Interviews.

Journal of Cybersecurity Education, Research and Practice, 2018(1), 5.
Tsan, J., Lynch, C. F., & Boyer, K. E. (2018). “Alright, What do we Need?”: A Study of Young Coders’

Collaborative Dialogue. International Journal of Child-Computer Interaction, 17, 61-71.
Vrzakova, H., Amon, M. J., Stewart, A., Duran, N. D., & D'Mello, S. K. (2020, March). Focused or Stuck

Together: Multimodal Patterns Reveal Triads' Performance in Collaborative Problem Solving.

In Proceedings of the Tenth International Conference on Learning Analytics & Knowledge (pp. 295-304).
Weinberger, A., & Fischer, F. (2006). A Framework to Analyze Argumentative Knowledge Construction in

Computer-Supported Collaborative Learning. Computers & Education, 46(1), 71-95.
Werner, L., Denner, J., Campe, S., & Kawamoto, D. C. (2012, February). The Fairy Performance Assessment:

Measuring Computational Thinking in Middle School. In Proceedings of the 43rd ACM Technical

Symposium on Computer Science Education (pp. 215-220).
Werner, L., McDowell, C., & Denner, J. (2013). A First Step in Learning Analytics: Pre-Processing Low-Level

Alice Logging Data of Middle School Students. Journal of Educational Data Mining (JEDM), 5(2), 11-37.
Yett, B., Hutchins, N., Stein, G., Zare, H., Snyder, C., Biswas, G., ... & Lédeczi, Á. (2020, February). A Hands-

On Cybersecurity Curriculum Using a Robotics Platform. In Proceedings of the 51st ACM Technical

Symposium on Computer Science Education (pp. 1040-1046).
Yett, B., Hutchins, N., Snyder, C., Zhang, N., Mishra, S., & Biswas, G. (2020, July). Evaluating Student Learning

in a Synchronous, Collaborative Programming Environment Through Log-Based Analysis of Projects.

In International Conference on Artificial Intelligence in Education (pp. 352-357). Springer, Cham.

Zakaria, Z., Boulden, D., Vandenberg, J., Tsan, J., Lynch, C., Wiebe, E., & Boyer, K. (2019, June). Collaborative

Talk Across Two Pair-Programming Configurations. In Proceedings of the 13th International Conference

on Computer Supported Collaborative Learning (CSCL) (pp. 224-231).
Zimmerman, B. J., & Pons, M. M. (1986). Development of a Structured Interview for Assessing Student Use of

Self-Regulated Learning Strategies. American Educational Research Journal, 23(4), 614-628.

http://snap.berkeley.edu/snapsource/snap.html

