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Abstract: The importance and ubiquity of computing and computational thinking (CT) is 

leading to re-design of K-12 curricula and the development of appropriate platforms to support 

computer science instruction. One such environment is the block-based, synchronous 

programming environment, NetsBlox, that allows for real-time collaboration amongst students. 

This work presents a novel combination of discourse and activity log analyses to study the 

collaborative behaviors of K-12 students as they worked on a week-long cybersecurity 

curriculum. Groups of students were assessed based on pre-post-test learning gains in 

cybersecurity and CT. We analyze the differences between the collaborative behaviors and 

discourse of high and low performing groups using case study and differential sequence mining 

analyses to characterize productive and unproductive collaborative problem solving in 

programming tasks. 
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1. Introduction 
 

Collaboration is considered a key computational practice (College Board, 2020) and offers several 

benefits worthy of further exploration. Previous work has shown that collaboration provides social 

support, thus allowing a group to learn from each other and overcome difficulties (Saenz-Otero et al., 

2010). Werner et al. (2012) found a significant positive relationship between time spent programming 

with a partner and assessment scores. Despite these, there is evidence of problems that can arise while 

students work together on programming projects. When pairing students with different experience 

levels, the more knowledgeable student often assumes full control and leaves their partner confused and 

disengaged (Braught, MacCormick, & Wahls, 2010). Working with others can be a frustrating, 

challenging experience that may ultimately undermine motivation (Rogat, Linnenbrink-García, & 

DiDonato, 2013). 

Taken together, it becomes important to design environments that guide students towards the 

benefits of collaboration while avoiding the pitfalls. To accomplish this, we need an improved 

understanding of the problem-solving processes groups employ, specifically the interweaving of dialog 

and actions as they work on their programming tasks. This may reveal how students develop an 

understanding of the desired computer science concepts and practices, while also exposing their 

difficulties and how they may overcome them via collaboration. Each mode of interaction requires 

unique analysis techniques in order to uncover the collaborative processes at play and ensure the success 

of each group. Our specific approach to collaborative programming analysis integrates discourse, 

learning, and log data, a combination that is still under-researched. 

Cybersecurity was the primary focus of this intervention. It has become an important component of 

computer science (CS) curricula, but presents complex concepts and can be difficult to grasp when not 

situated within meaningful contexts (Thompson et al., 2018). Robotics platforms have been successful 

in delivering cybersecurity curricula to K-12 students (Karaman et al., 2017; Lédeczi et al., 2019; Yett 

et al., 2020a). These platforms allow students to collaborate to solve larger, more complex problems 

through co-construction of knowledge (Fischer, Bruhn, Gräsel, & Mandl, 2002; Hmelo-Silver, 2003).   

In this study, students used the NetsBlox (Broll et al., 2017) environment to develop secure robot 

programs. NetsBlox features a collaborative editor where students can code together in a shared and 

synchronized workspace while working across multiple computers. Students were co-located and used 



their own laptops as they developed their robot programs, dynamically choosing their own roles in 

accord with findings related to potential issues of forced turn-taking (Tsan, Lynch, & Boyer, 2018).  

In order to investigate the collaborative potential of NetsBlox as a flexible, synchronous, co-located 

platform, we target the following research questions: (1) What programming behaviors as observed via 

differential sequence mining distinguish groups of students that are successful in the assigned tasks 

versus those that are not? (2) How did the relative presence or absence of collaboration during a 

specific project affect student understanding as indicated by learning gains? 

RQ1 provides insights into the collaborative programming process students used during the 

intervention. We hypothesize that groups with greater shared understanding of the task implemented 

patterns demonstrating systematic development of their code. RQ2 studies the impact of collaboration 

on learning performance on specific tasks. We hypothesize that groups with greater interactive 

discourse demonstrated improved collaborative processes targeting a shared understanding.   

 

 

2. Background 
 

Collaboration is “a coordinated, synchronous activity that is a result of a continuous attempt to 

construct and maintain a shared conception of a problem” (Roschelle & Teasley, 1995, p.70). 

Successful collaboration requires the co-construction of knowledge (Fischer et al., 2002; Hmelo-Silver, 

2003) between group members along with interactions on progress monitoring, providing constructive 

feedback, and encouraging the contribution of ideas (Garrison & Akyol, 2013; Grau & Whitebread, 

2012). To increase understanding of collaborative problem-solving (CPS) processes, researchers have 

developed several methodologies, such as after-the-fact reviews (Zimmerman & Pons, 1986) and 

concurrent think-alouds (Branch, 2013) to gain a deeper understanding of problem-solving processes.  

However, these methodologies have limitations, such as determining if the student is actually 

reporting what they thought at the moment and not inferring after the fact, unintentionally biasing the 

students with leading questions and interrupting the student’s thought processes (Branch, 2013; 

Zimmerman & Pons, 1986). To overcome such limitations, researchers have utilized students’ naturally 

occurring collaborative dialogue to provide insight into their collaborative problem-solving processes. 

Tsan et al. (2018) performed a qualitative analysis of pairs of students working collaboratively, 

including observations of how students claimed roles and how equally distributed dialogue was among 

group members. Zakaria et al. (2019) compared collaborating students’ discourse when they either 

shared a computer or worked side-by-side on separate computers on a shared project, finding no 

significant differences in the quantity of collaborative talk between the two configurations. 

While this dialogue is a rich resource, analysis can be time-intensive and may miss out on relevant 

information. For example, students may apply signifiers such as “this” or “that” in their discourse, 

referring to specific program components that are not immediately clear when looking at discourse 

transcriptions alone. Including students’ action logs can overcome such limitations. Kinnebrew, 

Segedy, and Biswas (2017) contributed a framework combining analytic measures (model-driven 

metrics) with patterns derived from students’ action sequences (pattern mining) during model building 

tasks to understand students’ problem-solving processes and the difficulties they face when working in 

open-ended learning environments (OELEs). Werner, McDowell, and Denner (2013) provided a tool to 

combine low-level logs into interpretable problem-solving strategies. 

However, students typically share one computer during co-located collaborative programming, and 

this makes it difficult to distinguish one student’s actions from another. A multimodal analysis approach 

that includes their discourse as well as individual actions in the system allows for a deeper analysis of 

collaborative problem solving. SLAM-KIT (Noroozi et al., 2019) is recent work aimed at aiding 

researchers as they combine multiple data streams and seek to better understand collaborative learning. 

Grover et al. (2016b) present a pilot study for multimodal analysis within a collaborative setting. 

Vrzakova et al. (2020) considered screen activity, discourse, and body motion as unimodal primitives 

and extended them to their multimodal combinations.  

Multimodal analysis creates an opportunity to further understand collaborative programming. 

Research on students’ collaborative programming has mostly focused on pair programming. However, 

some take-aways can apply to other forms of collaborative programming. Shi, Shah, Hedman, and 

O’Rourke (2019) describe effective collaboration, in the context of programming, occurring when all 

group members are actively involved in all aspects of the problem process, particularly the construction 



of the solution. During successful collaboration, group members share the responsibilities of discussion, 

planning, and implementation. Additionally, collaborative programming can improve individual 

programming skills more than solo programming (Braught, Wahls, & Eby, 2011). In this research, we 

aim to extend our understanding of collaborative programming through the systematic integration of 

discourse and log analysis to determine how these collaborative factors impact group learning. 

 

3. Methods 
 

3.1 NetsBlox and RoboScape 

 

NetsBlox, an extension of the Snap Programming language (http://snap.berkeley.edu/), is a visual 

programming environment created to teach students about distributed programming (Broll et al., 2017). 

NetsBlox allows projects to be shared among group members so that they can synchronously edit and 

execute various sections of their programs. This allows students to flow between different roles and 

maintain agency over their own work. Student actions are saved to a database as a particular action type, 

along with metadata such as the user id, project id, and Unix timestamp. This allows for the compilation 

of a comprehensive timeline of actions from a student and group perspective. 

Communication with a physical robot is enabled through Remote Procedure Calls (RPC). One such 

RPC, RoboScape (Lédeczi et al., 2019), has a set of specific commands that students can use to 

communicate with Parallax robots nearly instantaneously. RoboScape, like Zero Robotics (Saenz-Otero 

et al., 2010) and others, uses a robotics-based framework as an entertaining and educational approach 

to encourage collaboration through competition. Students work together to strategize for each specific 

competition and troubleshoot errors in their programs, observing any changes in real-time. 

 

3.2 Study Design and Analysis Framework 

 

Thirty-eight high school students spread across two, week-long summer camps completed our 

intervention using the NetsBlox and RoboScape environment. Like Karaman et al. (2017), we 

emphasized robotics software over hardware while incorporating project-based learning and 

collaborative requirements within a module-based structure. Day one began with an introduction to the 

NetsBlox environment to establish a baseline of programming proficiency. Day two was the first 

collaborative day for students. They primarily created simple manual driving programs using 

RoboScape to increase familiarity with the system and grow comfortable working as a team. Next, they 

progressively studied more complex cybersecurity techniques, with groups implementing both attack 

and defense strategies. This culminated in a final competition that required both collaboration and 

programming skills to succeed while fending off cyber-attacks (Lédeczi et al., 2019; Yett et al., 2020a). 

 

Table 1. Our Analysis Framework 

 Learning 
Individual 

Action Analysis 
Sequence Analysis CPS Discourse 

Desired 

Characteristic 

Indicative of 

Shared 

Understanding 

Learning gains 

experienced by all 

group members 

Equal distribution 

of programming 

activities 

Utilization of strategies 

identified as supporting 

program development 

Predominantly interactive 

discourse for a shared 

understanding of the 

problem 

Analysis – 

Entire 

Intervention 

Average normalized 

change of results in 

CT and 

cybersecurity 

Actions taken by 

each group 

member, Gini 

coefficient 

Differential sequence 

mining of full sequence 

of actions 

N/A 

Analysis – Tug 

of War project 

Average normalized 

change of results 

related to project 

Actions taken by 

each group 

member, Gini 

coefficient 

Markov chains of actions 

taken during the project 

Application of framework 

to the discourse of 

students during the project 

 

The students separated into dyads and triads, choosing their own groups. To be considered a group 

for this analysis, the students had to work together for at least three of the four collaborative days of the 



intervention. Each student also had to complete the pre- and post-tests. Twelve groups were included – 

six dyads and six triads - spread throughout the two weeks of the camp. The framing of our collaborative 

analysis approach is presented in Table 1 above.  

Data logged during the intervention was queried from the NetsBlox database. We extracted the 

action data from the database and categorized them as Solution Construction (SC) and Solution 

Assessment (SA) actions (Kinnebrew et al., 2017). SC actions were subdivided into (1) FillField actions 

when students changed the values of variables, lists, or robot commands; (2) AddBlock or (3) 

RemoveBlock actions when students added a new block to their program or deleted an existing block; 

(4) ConnectBlock or (5) DisconnectBlock actions when students attached a block to existing blocks or 

removed a block from an existing sequence of blocks, respectively. SA actions were likewise split into 

(1) StartSimulation actions when students clicked on the “green flag” within the NetsBlox environment 

to begin running a full program or (2) StartScript actions when students executed only a small portion 

of their code. Additionally, Idle events occurred when students within a group had a gap of 160 seconds 

or more between two actions. This value was determined by the 95th percentile of the time intervals. 

We applied collaborative discourse analysis (Snyder et al., 2019; Snyder, Hutchins, Biswas, & 

Grover, 2019) superimposing the ICAP (Interactive-Constructive-Active-Passive) framework of 

engagement modes (Chi & Wylie, 2014) onto the Weinberger & Fischer (2006) framework component 

of social modes during knowledge construction. This combined framework allows for analysis of 

students’ engagement as well as their social modes. The resulting framework consists of eight 

components - we consider six of them within our analysis. (1) Interactive conflicted-oriented consensus 

building (ICO) occurs when most group members are participating in the model building and are 

disagreeing about what needs to be done. (2) Interactive integration-oriented consensus building (IIO) 

occurs when most group members are participating but no member is taking a strong position on what 

the next step should be. (3) Interactive quick consensus building (IQ) occurs when most group members 

are participating in the model building and one member’s suggested contribution is accepted with little 

to no discussion. (4) Interactive elicitation (IE) occurs when most group members are participating in 

the model building and one student questions the group. (5) Constructive externalization (CEX) occurs 

when only one group member is participating in the model building and narrates their actions and 

thought processes. (6) Constructive elicitation (CEL) occurs when only one student is participating and 

asks the other non-participating group members a question. Inter-rater reliability was checked by two 

coders on a 36-utterance segment of discourse and resulted in a Cohen’s kappa value of 𝑘 = 0.73, 

indicating good agreement.  

We answered RQ1 via the “Learning” and “Sequence Analysis” columns of our framework (Table 

1). The pre- and post-tests (targeting CT and cybersecurity) were graded using normalized change 

(Marx & Cummings, 2007) to measure the growth from pre- to post-test for each individual student. 

These were combined to provide an average normalized change (ANC) based on the number of students 

in the group, leading to a median split into “Large Improvement” (LI) and “Small or No Improvement” 

(SNI) groups. We applied Differential Sequence Mining (DSM) to evaluate key strategies implemented 

by LI and SNI groups (Kinnebrew, Loretz, & Biswas, 2013; Kinnebrew et al., 2015). DSM compares 

the instance support, or i-support (I-S), of the compared groups. I-S is defined as the average number 

of times the pattern was used by each group. 

A competition from day three of the intervention called “Tug of War” (ToW) was chosen for further 

analysis drawing from both the action logs and the discourse of students. In this competition, students 

fought for control over a robot. Each group would simultaneously send commands to a single robot, 

attempting to maneuver it towards opposing objectives. This project was chosen because of its highly 

collaborative nature, as teams of students had to program and strategize together in order to succeed. It 

was also chosen due to the relation between the sections of code often used by successful teams and 

two questions on the pre-post-tests related to loops and denial of service attacks. Students learned about 

and implemented denial of service attacks - and defenses for such attacks - in preparation for the ToW 

competition, while loops were a necessary component of these attacks.  

To answer RQ2 within the ToW context, we required all four columns of the framework presented 

in Table 1. We selected two groups for analysis – one LI group and one SNI group. Log data was used 

to compute the Gini coefficient (Dorfman, 1979) as a metric to evaluate individual contributions to 

group performance. Gini coefficients indicate the share of actions taken by each student, with smaller 

values corresponding with more equally divided actions. We computed ANC on the specific ToW-

related questions as well as determining the action counts (adjusted for number of group members and 



the half-day length of the project) and Gini coefficient during this time. We also generated Markov 

chain (MC) models (Russell & Norvig, 2003) with students’ sequences of log actions to analyze overall 

group programming sequences. Each state in the state space is represented by an action which occurred 

at time t, and a transition probability indicates the likelihood for another action to occur at time t+1 with 

the fitted MC model. Finally, we manually applied our collaborative discourse framework to the 

discussions of the chosen groups during this project, resulting in counts from each category as well as 

specifically highlighted discussions related to the programming strategies of each group. 

 

4. Results 

 
Summative results indicated learning gains across CT and cybersecurity (Yett et al., 2020a). Further 

analysis revealed relationships between average normalized change and results from action log data, 

the strongest of which corresponded to solution construction actions (Yett et al., 2020b). 

 

4.1 RQ1: What programming behaviors as observed via differential sequence mining (DSM) 

distinguish groups of students with large improvements during the intervention versus those 

without? 

 

Using the DSM method, we found action sequence patterns that had statistically significant differences 

in the instance support (I-S) metric between “Large Improvement” (LI) and “Small or No Improvement” 

(SNI) groups. Table 2 lists the patterns and the DSM results ranked by the effect size of the differences. 

The threshold of the s-Support (percentage of groups supporting this pattern) of the DSM was set at the 

80% level, and there was no gap allowed between actions. 

 

Table 2. DSM Results 

 Pattern I-S 

(LI) 

I-S 

(SNI) 

p-

value 

Effect 

Size 

1 ConnectBlock x 9 1.3 4.2 0.02 1.69 

2 StartScript, DisconnectBlock, StartScript, RemoveBlock 1.2 0.2 0.02 1.65 

3 StartSimulation, DisconnectBlock 6.0 16.7 0.03 1.62 

4 StartSimulation x 6 4.0 17.8 0.04 1.54 

5 FillField, StartScript, FillField, StartScript, ConnectBlock 1.8 0.7 0.03 1.49 

 

SNI groups were more likely to perform a long series of edits to their models. The pattern 

ConnectBlock × 9 (pattern 1) appeared in 100% of the SNI groups, who also had much larger I-S of 

this pattern (4.2 instances per group). This depth-first programming approach as opposed to 

programming in parts has been reported in the literature (Grover, Bienkowski, Niekrasz, & Hauswirth, 

2016). Secondly, SNI groups used more solution assessment (SA) actions overall, especially the 

StartSimulation action once or multiple times in succession (e.g. pattern 4). Though SA actions offer 

important feedback to construct models effectively, their excessive use implies running simulations 

without modifications to the models, which indicates an inability to comprehend the information 

provided by simulations and was linked to SNI students’ overall poorer learning performance.  

LI groups showed a more systematic programming approach. Patterns 2 and 5 both could indicate 

productive troubleshooting behaviors of students testing new blocks or variable values. This is further 

established by the fact that although SNI groups implemented pattern 3 more (which is similar to the 

initial sequence of pattern 2), the LI groups may have done so in a more systematic way, as they played 

the simulation, disconnected a block that may have contained an error, played again to test, and 

(presumably correct in their hypothesis) removed the block. We hypothesize that the increased use of 

pattern 3 by SNI groups was due to unsystematic debugging methods used to identify code errors, an 

indication of ineffective trial-and-error approaches (Murphy et al., 2008). Pattern 5 shows these LI 

groups changing variable values (FillField) followed by testing those changes depending on the current 

task at hand (StartScript) and adding the block they were modifying to the full program (ConnectBlock). 

 

4.2 RQ2: How did the relative presence or absence of collaboration during a specific project affect 

student understanding as indicated by learning gains? 



 

Our case study compares the discourse and log data of an LI group (Group 7) to a SNI group (Group 

12) during the Tug of War (ToW) task.  

 

4.2.1 Group 7 

 

Group 7 (G7) was a dyad that worked together from Day 2 through Day 4. They were average in terms 

of Gini coefficient (0.19) and total actions taken per student per day (364), indicating that they evenly 

contributed to the projects. They also showed the most improvement among any groups with an average 

normalized change (ANC) of 0.92. Their results during ToW were similar to their overall scores, with 

an adjusted 321 actions, Gini coefficient of 0.19, and ANC of 1 (as each student began with missing at 

least one of the questions on the pre-test but each answered the questions correctly on the post-test). 

G7 implemented a few sequences (Figure 1) that relate to our findings from Section 4.1. For 

instance, transitions such as FillField to StartScript may be associated with the productive 

troubleshooting behaviors described. They also frequently transitioned between FillField and 

StartSimulation, which indicated a debugging strategy by tweaking the parameters between tests.  This 

model also indicates potentially new troubleshooting techniques, such as running an individual script 

for local testing followed by running the entire program. Overall, the group exhibited a variety of 

behaviors depending on the current needs of the project, with at least one non-recursive transition out 

of each state. One possible cause for concern is the high likelihood of Idle to StartScript, which could 

indicate a return to the program after some time spent off-task and an immediate test of a feature that 

had already been attempted unsuccessfully. However, this may also relate to discussion time and the 

running of the simulation for further verification. Additionally, students in this group had a 38% 

likelihood of transitioning from AddBlock to RemoveBlock. Though this is not necessarily indicative of 

mistakenly adding a block only to remove it, it could signify program changes without proper testing. 

  

 

 
 

Figure 1. Markov Chain Results from Group 7 
 

G7 demonstrated predominantly interactive discourse during programming strategy time segments 

(Table 3). Coded collaborative discourse indicated that only 32% of utterances coded were constructive, 

with the group’s discourse targeting mainly interactive integration-oriented consensus building (IIO) 

and interactive elicitation (IE) in developing their models. In the provided example, group members 

used explanatory words such as “because” that indicate the group’s ability to reason about their 

programming actions. This coincides with the literature in that group reasoning and explanatory process 

are supportive of developing a shared understanding (Fischer et al., 2002; Hmelo-Silver, 2003). Both 

students logically contributed approximately equally to all Interactive discussions, as interaction is 

required to achieve such a coding. However, G7-S2 otherwise dominated the conversation, spending 

more time in a Constructive state attempting to engage their partner while G7-S1 responded tersely or 



not at all. G7-S2 also commonly explained their programming and competition strategies to G7-S1 and 

several outsiders to the group, resulting in high quantities of constructive externalization (CEX). 

 

Table 4. Excerpt from Group 7 Highlighting their use of Programming Strategy 

Student Discourse CPS Code 

S1 "my sent" isn't working ICO 

S1 what did you do? ICO 

S2 me? ICO 

S1 why are all these right there ICO 

S2 because they're for the sent commands ICO 

S1 why are they under forwards (custom blocks) ICO 

S2 
they're under there so that when we send a command it changes "my 

sent". I put them there for a reason 
ICO 

S1 well "my sent" is going but the "sent" overall isn't changing ICO 

S2 no it does see, "change sent by 1" right there ICO 

S1 no, ok. that's not changing. neither is "my sent" ICO 

S2 where is our robot? there it is IIO 

S1 "sent" itself is not changing. right there. the overall "sent" IIO 

S2 mine is IIO 

S1 but "my sent" is changing IIO 

 

4.2.2 Group 12  

 

Group 12 (G12) was a triad that worked together from Day 2 through Day 5. They were average in 

terms of Gini coefficient (0.20) but took the fewest actions (229) and were the only group to regress 

from pre- to post-test (ANC = -0.08). At an individual level, two students recorded ANC’s of 0, while 

one recorded a -0.33 – an additional positive consideration is that the regressing student started with a 

perfect score and another student only missed one question on each of the pre- and post-tests. Though 

they took a similar number of actions during ToW after accounting for the length of the session (209), 

their actions were less evenly divided than usual (Gini = 0.32). Despite this, they saw some 

improvement in the ToW-related pre-post questions (ANC = 0.67), all from the growth of one student 

as the other two had answered both questions correctly on the pre-test. 

 

 
 

Figure 2. Markov Chain Results from Group 12 

 

An immediate cause for concern upon examination of Figure 2 is the high likelihood of repeated 

StartSimulation (89%) and StartScript (70%) actions. This coincides with our finding in Section 4.1 

demonstrating that SNI groups were likely to implement long sequences of SA actions. Some of this 

can be explained by the nature of the task, as students often needed to execute at least a few scripts (or 

the full simulation) in sequence in order to perform well. However, usage at this magnitude indicates 

repeated examination of the impact of one or a few changes without any modifications in between. This 

group displayed some positive attributes as well. For example, they rarely transitioned from AddBlock 



to RemoveBlock or RemoveBlock to RemoveBlock, instead showing the desired behavior of StartScript 

following these changes to their program. On the other hand, the model edit actions and the simulation 

actions were disjoint: unlike that of Group 7, the MC model of this group had no connection between 

StartSimulation to any model edit action, and the ConnectBlock to StartScript link that is an important 

part of a debugging strategy was missing.  As a result of this disjoint modeling and testing behavior, 

this group of students did not seem to be able to build and modify the ToW model successfully. 

G12’s discourse (Table 4) is defined by significant use of constructive discourse with little to no 

explanations for programming changes. For instance, S1 says “as long as you use that to move then we 

shouldn't get locked out,” with no reasoning. Overall, 45% of the group’s coded utterances were 

constructive, compared to G7’s 32%. Of the interactive discussions, the group implemented mainly IE, 

in which one student questions the group. G12-S1 exhibited similar tendencies to G7-S2, taking on a 

leadership role and generating more discussion than their peers. Likewise, G12-S2 was similar to G7-

S1, still contributing to the programming process but not as frequently. One group member, S3, rarely 

participated in discussions (accounting for less than 10% of the group’s coded utterances). Overall Gini 

data for the group does indicate that all students normally participated somewhat evenly, so this could 

just be an outlier caused by external factors upon G12-S3.  

 

Table 4. Excerpt from Group 12 Highlighting their use of Programming Strategy 

Student Discourse CPS Code 

S1 as long as you use that to move then we shouldn't get locked out ICO 

S2 It’s not working  ICO 

S1 Okay [name] CEX 

S1 so CEX 

S1 I set this to number 2 CEX 

S2 okay CEX 

S1 So when I press 2 CEX 

S2 Press 2 CEX 

S1 Actually wait we don’t need number 2 that won’t work. We need the flag CEX 

S2 The flag? CEL 

S1 And it needs to be a forever loop CEL 

 

 

5. Discussion and Conclusion 
 

At an overall level, a few characteristics stand out as being common between the two groups. They 

spent an approximately equivalent amount of their conversation time on interactive conflicted-oriented 

consensus building (ICO) (26 for G7 and 23 for G12). Though this behavior is argumentative in nature, 

at these low levels it can often be beneficial in terms of an improved shared understanding and moving 

the project forward (Weinberger & Fischer, 2006). The two groups also displayed a similar quantity of 

each kind of constructive discourse and an almost complete lack of interactive quick consensus building. 

On the other hand, G7 conducted almost twice as many IE exchanges than their counterparts in G12 

(110 to 66) along with almost four times as many cases of IIO (81 to 22). Overall, G7 displayed almost 

entirely positive features from the framework established in Table 1, learning together and showing 

their collaborative skills through Individual Action Analysis, Sequence Analysis, and Collaborative 

Problem-Solving (CPS) Discourse Analysis. On the other hand, despite some promising trends in 

Sequence Analysis and Learning during Tug of War (ToW), G12 appeared to struggle to work together 

and reach the desired level of achievement. 

The combination of NetsBlox and RoboScape provides a convenient venue for studying 

collaborative programming. We contributed new findings in the analysis of programming actions taken 

by students while collaborating, considering both the distribution of actions amongst group members 

and the full combined sequence of actions of the group. We also used the available data to highlight 

two groups as they interacted during a collaborative task. Each of these groups showed Interactive 

behaviors and students filling specific collaborative roles even without the assignment of predefined 

roles. The dyad was more successful in terms of sharing actions and showing improvements from pre-

post, while the triad seemed to leave one student behind and struggle more. Taken together, these groups 



indicate that collaboration on the ToW project could have some impact on pre-post results. However, a 

more complete dataset would be necessary to validate this claim after addressing a few shortcomings. 

One limitation of the system is that network issues can lead to interruptions in collaboration as 

projects become desynchronized; an integrity check to ensure consistency between the distributed 

applications could help mitigate this issue. We also allowed groups to choose their own members, 

possibly skewing results as friends teamed up and worked well together while students that did not 

know each other had to build their relationship. To somewhat mitigate this disadvantage, lectures on 

collaboration (Karaman et al., 2017) would be a welcome addition. A final area for improvement is in 

collecting audio/visual data throughout the intervention, as problems such as microphones being too far 

away from students and students manually canceling recordings caused us to lose some or all data for 

certain groups. The combination of these and other factors forced the decision to compare a dyad and 

triad for our case studies. Ideally, we would compare only dyads or only triads for consistency. We plan 

to remedy the discussed limitations and introduce additional analysis methods in order to progress the 

understanding of the effectiveness of our platform. 
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