
So, H. J. et al. (Eds.) (2020). Proceedings of the 28th International Conference on Computers in Education.
Australia: Asia-Pacific Society for Computers in Education

Experimental Design of Automated Extraction
for 3-Level Tutoring Support Information in

Programming Exercises

Yasuhiro NOGUCHIa*, Kousei AYABEa, Koichi YAMASHITAb, Satoru KOGUREa,
Raiya YAMAMOTOc, Tatsuhiro KONISHIa & Yukihiro ITOHd

aFaculty of Informatics, Shizuoka University, Japan
bFaculty of Business Administration, Tokoha University, Japan
c Faculty of Engineering, Sanyo-Onoda City University, Japan

d Shizuoka University, Japan
*noguchi@inf.shizuoka.ac.jp

Abstract: In programming classes, teachers and teaching assistants (TAs) cooperate to support
learners’ programming exercises. In many situations while providing support, however,
teachers cannot find and resolve the impasse for individual learners while at the same time
monitoring the impasse trend in the entire class to effectively provide learners with additional
information. In this paper, we categorized 3-level tutoring support information for teachers’
activities and designed the experimental architecture for a system that supports automated
extraction for the 3-level information from learners in programming exercise activities.

Keywords: Automatic impasse detection, programming exercise, monitoring, decision support

1. Introduction

In recent years, the development of an information society has required more information
engineers, including system engineers. In this context, programming skills are not only
necessary for such engineers, but are becoming fundamental skills for most of them to utilize
information systems in their fields. As well as science or engineering colleges and technical
schools for such engineers, liberal arts colleges and ordinary high schools also provide some
programming education classes. In early programming education, the following two teaching
methods and their mixed method like PBL are often used to acquire basic programming skills:

 A lecture-style method whereby students learn the theory of programming, syntax of

programming languages and behaviors, and features of algorithms by listening to the
teacher’s lecture and reading textbooks themselves.

 An exercise-style method whereby students learn the practical skills of programming by
completing tasks based on the lecture content. While the learners attempt to complete the
exercises, the teachers circulate among the learners to answer their questions, check the
work of learners who are having difficulties, and to provide learning support.

However, novice learners occasionally experience impasses during coding exercises.

They might be unable to recover from an impasse for a long time, and therefore cannot proceed
with their exercise. For example, syntax errors are the most common errors for them; as
reported by Denny, Luxton-Reilly, David, and Hendrickx (2011) based on their analysis of
Java programing exercise classes, “some students were often unable to solve their syntax
problems.” Becker et al. (2011) summarized various viewpoints for improving compilers’ error
messages for novice programmers (readability, cognitive load, provide context, show
examples, scaffolding, logical argumentation, and so on). It has been shown that various

measures are necessary to convey the message to learners. Furthermore, learners often reach an
impasse where they cannot construct the steps for implementation, cannot find the location
(line number) of the codes that have caused the runtime error, cannot solve the run-time error,
cannot complete the procedures to attain the expected output values with the expected behavior
of the program, and other problems. The cause of an impasse basically depends on the
individual situation. Moreover, learners cannot identify the impasse situation, and even if they
do have opportunities to ask teachers, they may not be able to explain the situation correctly.

In programming education, many learners complete the exercises using their own PCs,
while a small number of teachers and teaching assistants (hereinafter, “teachers”) support them
by circulating to answer their questions. Recent novice programming classes are typically
one-to-many teaching situations that may face the following difficulties:

A) Difficulty in finding and resolving the impasse for individual learners

Since the learner completes the exercise using their own PC, it is difficult for the teachers
to identify what student has reached an impasse in the exercise. Moreover, when the
teachers take the learner’s PC to identify the cause of their impasse, it shortens the time the
learner has in which to complete the exercises.

B) Difficulty in monitoring the overall class trend in learners’ impasses
Since individual teachers do not have time to share their support results, it is difficult for
them in the one-to-many teaching situation to monitor the overall impasse trend in the
class in real time. Thus, in the class, it is difficult for teachers to provide additional
instructions to learners based on the common types of impasse and common causes of
impasse amongst the class learners. Moreover, they cannot update their teaching materials
based on the types of impasse identified.

Regarding the detection of impasses and mistakes, several methods have been proposed

to detect these by collecting and analyzing learners’ compilation errors and by analyzing
learners’ programming activities such as keyboard, mouse click, et cetera (Mazza & Dimitrova,
2004; Biswas & Sulcer, 2010; Hartmann, MacDougall, Brandt, & Klemmer, 2010). However,
although some automated feedback tools focus on error detection, they do not provide
sufficient feedback for novice programmers (Keuning, Jeuring, & Heeren, 2008). McCall and
Kolling (2019) show that there is a large difference in the frequency of occurrence and
difficulty of each type of problem for novice programming learners. Therefore, it is difficult to
provide guidelines in advance for the problems that may occur. Furthermore, Brown and
Altadmri’s (2014) study showed some discrepancy between the frequency of problems
recognized by teachers (like many learners being troubled by a particular problem) and the
actual frequency of learners’ problems. It is necessary, therefore, to provide individualized
tutoring based on the actual learner’s situation, and to rely less on teachers’ intuition. It is also
important to monitor the real-time learners’ impasse trend in the classroom.

To reduce these difficulties, in this research, we classified information supporting the
difficulties A) and B) into three levels that can be analyzed with the impasse detector
(Yamashita et al., 2017). We suggested an experimental design for the system supporting
automated extraction of the 3-level information from learners.

2. 3-Level Tutoring Support Information

In this section, we describe the requirements for the monitoring system to support the role of
teachers in the exercises portion of learning programming: circulating among the learners to
answer their questions, providing additional instructions for them, and updating teaching
materials to eliminate their impasses. To reduce the difficulties A) and B), the following
functions are required for the system:

A1) A function that provides teachers with a trigger for circulating to a specific learner by

automatically identifying whether the learner is in an impasse or not.
A2) A function that provides teachers with tutoring information regarding the learner who

has reached an impasse without suspending the learner’s programming activities
before the teacher circulates to that learner.
 What is the location of the latest learner’s code in their impasse?
 What is the location of the teacher’s correct answer code corresponding to the

latest learner’s code in their impasse?
 What are the causes of the impasse?

B1) A function that identifies the number and tendency for learners to reach an impasse as
a trigger for teachers to provide additional instructions and/or to re-explain the
exercise to the entire classroom.

B2) A function that extracts common impasses for learners.
 What are the common locations in the teacher’s correct answer code in learners’

impasses in the classroom?
 What are the common causes for learners’ impasses in the classroom and/or the

course of the programming exercise class?

In previous research (Yamashita et al., 2017), the impasse detector focused on detecting
some signs of impasse based on individual learners’ coding activities in real-time. Teusner,
Hille, and Staubitz (2018) also detected some learners’ impasses from the tendency of
keyboard input (keyboard interventions, and so on). Therefore, these studies could be
positioned to contribute to the realization of the function A1). However, to realize the function
A2), the system should identify the location (line number) in the learner’s code at which the
learner has reached an impasse. Additionally, the learner’s impasse location in their code,
identified in previous monitoring time, should be traced to the learner’s latest code, if the
location is moved because the learner has edited the code for another purpose. Moreover, the
location should correspond to the location of the teacher’s correct answer code in order to
understand the learner’s code in the context of the current programming exercise problems.
Furthermore, providing some candidates regarding why the learner has reached an impasse is
useful for teachers when preparing their support plan for learners.

Regarding B), it is difficult for a small number of teachers to aggregate individual
impasse conditions for many learners. Thus, the monitoring system should support teachers by
summarizing and extracting the situations that occur in the classroom. To realize the function
B1), not only should the system identify the occurrence of a learner’s impasse, but it should
also identify whether the sign of impasse is continuing or not, and when the sign disappears. To
realize the function B2), the system should aggregate learners’ codes, and analyze them for
correspondences based on the teacher’s model code since each learner’s code is different. If the
system aggregates learners’ common impasses in the classroom on the teacher’s model code,
the teacher can then prepare additional instructions and identify points of update for the
teaching materials on that basis. Additionally, the common causes of learners’ impasses could
be aggregated not only as a class, but also whole classes in the course can be used to update
teaching materials and scaffolding strategies.

Based on the above, we propose a framework of automated extraction for 3-level tutoring
information as shown in Figure 1. Lv.1 is the impasse line number of the location on each
learner’s latest code. Lv.2 is the impasse line number of the location on the teacher’s model
code corresponding to each learner’s impasse. Furthermore, Lv.2 information shows the
impasses common to multiple learners. Lv.3 comprises the learning items that allow learners to
resolve their impasses corresponding to each learner’s impasse. The Lv.3 information is
aggregated to identify learning items that are common to learners in multiple classes.

Program Codes

Standard Algorithms (Model Codes)
of all exercises in the course Learners

Learning Items

Learning Item
(A)

Learning Item (B)

Learning Item
(A)

Learning Item
(B)

・
・
・

Learning Item
(N) Learning Item

(A)

Lv.3: Learning Items
corresponding with learners’

impasse

Lv.2: Impasse Line
Number on Standard

Algorithm

Lv.1: Impasse Line
Number on Individual

Learner’s Code

Instruction for the
classroom and update
materials in the course

Tutoring for each
learner

Standard Algorithms
in past classes

Figure 1. 3-Level Tutoring Information in the Framework

3. Experimental Design for Proposed System

3.1 Architecture of the System

Figure 2 shows the architecture of the system. The Learner’s Activity Collector collects the
learner’s codes, compiles a log, and provides the execution log of the successfully compiled
program whenever the learner compiles their codes. These data are then sent to Impasse
Analyzer Lv.1, Lv.2, Lv.3 in sequence, and these analyzers extract Lv.1, Lv.2, Lv.3
information. The teacher creates some model codes (hereinafter, “standard algorithm”) in
advance and adds links on certain lines of the model codes to learning items in the learning
materials used in the programming course.

3.2 Impasse Analyzer Lv.1

While the existing impasse detector (Yamashita et al., 2017) only identifies whether the learner
has reached an impasse or not, our impasse detector observes learners’ coding activities and
can observe a learner’s focused location by presenting a sign of the learner’s impasse based on
10 rules in the impasse detector. Thus, for the prototype implementations for the system, a line
number is provided when the sign of impasse appears. Additionally, by analyzing the changes
from the immediately preceding codes each time, the record in the latest learner’s code
succeeds the impasse history at the corresponding location. Finally, the analyzer recodes the
impasse types and their accumulated number on the line in the latest learner’s codes, which
enables them to continuously measure learners’ impasses at the same location.

3.3 Impasse Analyzer Lv.2

The analyzer records impasse types and their accumulated number and the number of learners
who reach the same impasse on the line in the standard algorithm. This is realized by analyzing
learners’ codes and applying a standard algorithm to synchronize corresponding lines based on

their code design structures. In many studies, static analysis for the program code is used to
create a correspondence between each learner’s codes and the teacher’s model codes. It is
known that if the constraints on the learners’ developing codes are strict in the exercise portion
of the class, static analysis can be performed for line-by-line correspondence between the
learner’s code and teacher’s model code (Keuing, Jeuring & Heeren 2018). However, if the
constraints of the learners’ code are strict, this limits the possible exercises that teachers can
design, particularly for developing learners’ practical skills.

Program Codes
Learners

File Server

Impasse Analyzer Lv.1

Impasse Analyzer Lv.2

Impasse Analyzer Lv.3

Learner’s Activity Collector

• Learner’s Program Code
• Error Log
• Execution Log

Standard Algorithm with links
to related learning items Learning Materials

Teachers

Impasse Line Number with
Impasse Type and Counts in the

Learner’s Program Codes

• Learner’s Program Code
• Error Log
• Execution Log

• Learner’s Program Code
• Error Log
• Execution Log

• Learner’s Program Code
• Error Log
• Execution Log

• Learner’s Program Code
• Error Log
• Execution Log

• Learner’s Program Code
• Error Log
• Execution Log

• Learner’s Program Code
• Error Log
• Execution Log

Type1, 4

Type3, 2

Impasse Line Number with Impasse
Type, Counts and No. Learners in

the Standard Algorithm

Type1, 7, 2

Type3, 5, 3

Learning Items with No.
Learners in Impasse

12

3

Figure 2. Architecture of the System (analysis flow example for one learner)

Figure 3. Comparison between learners’ codes and standard algorithm in Impasse analysis L.v.2

Therefore, in this paper, we used the format of “standard algorithm” in Konishi, Suzuki, and
Itoh (2000) to allow some variations in the teacher’s model code. The standard algorithm is
described in extended PAD (PAD is a structured diagram developed by (Futamura, Kawai,
Horikoshi & Tsutsumi (1980)), and enables teachers to write model codes that include
variations in the ordered blocks and selective blocks in Figure 3. Most implementations for
algorithms in programming classes for novice learners include free ordering blocks (where the
same results are executed from proceeding block A and B as in proceeding B and A), and free
selective blocks (where the same results are executed from proceeding A and proceeding B).
By this means, multiple patterns of model code variations can be prepared relatively easily.

3.4 Impasse Analyzer Lv.3

When teachers create a standard algorithm, they add links from lines on the standard algorithm
to learning items to solve the impasse in the lines. The lines in the standard algorithm record the
number of learners who have reached an impasse and the number of times an impasse occurs
on a given line. As a result, from the findings regarding which learning items are related with a
greater number of impasses, teachers can learn which learning items are likely to bring learners
to an impasse in the classroom due to lack of understanding.

4. Conclusion

In this research, to reduce teachers’ difficulties when circulating amongst learners during
programming exercises, we designed a framework for collecting 3-level tutoring information
from learners completing the exercise. We proposed a prototype system to extract this
information based on an existing learners’ impasse detector and static analysis between
learners’ codes and teachers’ model codes. In the future works, to increase the performance of
the function for problem A) and B), it is necessary to tune the threshold function and clarify the
restrictions/expectations for learners while adjusting to real programming exercise situations.

Acknowledgements

This study was supported by Japanese Grants-in-Aid for C19K122650.

References

Becker, B., Denny, P., Pettit, R., … Prather, J. (2019). Compiler error messages considered unhelpful: The

landscape of text-based programming error message research. ITiCSE ‘19: Innovation and Technology in
Computer Science Education (pp. 177–210). doi:10.1145/3344429.3372508.

Biswas, G., & Sulcer, B. (2010). Visual exploratory data analysis methods to characterize student progress in
intelligent learning environments. 2010 International Conference on Technology for Education (T4E) (pp.
114–121). IEEE.

Brown, N. C., & Altadmri, A. (2014). Investigating novice programming mistakes: Educator beliefs vs. student
data. Proceedings of the Tenth Annual Conference on International Computing Education Research (pp.
43–50). ACM.

Denny, P., Luxton-Reilly, A., David, I. & Hendrickx, J. (2011). Understanding the syntax barrier for novices.
ITiCSE ‘11: Proceedings of the 16th Annual Joint Conference on Innovation and Technology in Computer
Science Education (pp. 208–212). https://doi.org/10.1145/1999747.1999807.

Hartmann, B., MacDougall, D., Brandt, J., & Klemmer, S. R. (2010). What would other programmers do?
Suggesting solutions to error messages. Proceedings of the SIGCGI Conference on Human Factors in
Computing Systems (pp. 1019–1028). ACM.

Keuning, H., Jeuring, J., & Heeren, B. (2008). A systematic literature review of automated feedback generation
for programming exercises. ACM Transactions on Computing Education, No. 3.
https://doi.org/10.1145/3231711

Konishi, T., Suyama. A., & Itoh. Y. (1995) Evaluation of Novice Programs Based on Teacher's Intentions,
International Conference on Computers in Education, (pp.557-566).

Mazza, R., & Dimitrova, V. (2004). Visualizing student tracking data to support instructors in web-based distance
education. Proceedings of the 13th International World Wide Web Conference on Alternate Track Papers &
Posters (pp. 154–161). ACM.

McCall, D., & Kölling, M., (2019). A new look at novice programmer errors. ACM Transactions on Computing
Education, July 2019, Article No.38. https://doi.org/10.1145/3335814

Teusner, R., Hille, T., & Staubitz, T. (2018). Effects of automated interventions in programming assignments:
Evidence from a field experiment. Proceedings of the Fifth Annual ACM Conference on Learning at Scale,
no.60, pp.1–10. https://doi.org/10.1145/3231644.3231650

Futamura, Y., Kawai, T., Horikoshi, H., & Tsutsumi, M. (1980). Disign and Implementation of Programs by
Problem Analysis Diagram (PAD), Journal of Information Processing Society of Japan, Vol.21, No.4,
(pp.259-267). (in Japanese)

