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Abstract: Learning Analytics (LA) involves a growing range of methods for understanding and 
optimizing learning and the environments in which it occurs. Different Machine Learning (ML) 
algorithms or learning classifiers can be used to implement LA, with the goal of predicting 
learning outcomes and classifying the data into predetermined categories. Many educational 
datasets are imbalanced, where the number of samples in one category is significantly larger 
than in other categories. Ordinarily, it is ML’s performance on the minority categories that is the 
most important. Since most ML classification algorithms ignore the minority categories, and in 
turn have poor performance, so learning from imbalanced datasets is really challenging. In order 
to address this challenge and also to improve the performance of different classifiers, Synthetic 
Minority Over-sampling Technique (SMOTE) is used to oversample the minority categories. In 
this paper, the accuracy of seven well-known classifiers considering 5 and 10-fold 
cross-validation and the F1-score are compared. The imbalanced dataset collected based on 
self-regulated learning activities contains the learning behaviour of 6,423 medical students who 
used a web-based study platform—Hypocampus—with different educational topics for one 
year. Also, two diagnostic tools including Area Under the Receiver Operating Characteristics 
(AUC-ROC) curves and Precision-Recall (PR) curves are applied to predict probabilities of an 
observation belonging to each category in a classification problem. Using these diagnostic tools 
may help LA researchers on how to deal with imbalanced educational datasets. The outcomes of 
our experimental results show that Neural Network with 92.77% in 5-fold cross-validation, 
93.20% in 10-fold cross-validation and 0.95 in F1-score has the highest accuracy and 
performance compared to other classifiers when we applied the SMOTE technique. Also, the 
probability of detection in different classifiers using SMOTE has shown a significant 
improvement.  
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1. Introduction 
 
The data generated in educational environments such as courses that use learning management systems 
or digital learning materials are frequently large, complex and heterogeneous (Martins et al., 2019). 
Learning Analytics (LA) (Khosravi & Cooper, 2017) can be defined as the measurement, collection, 
analysis and reporting of data about learners and their contexts and contains a wide range of methods for 
understanding and optimizing learning and the digital environments in which it occurs. LA is 
commonly implemented with the use of different ML algorithms (Chung & Lee, 2019), which are 
strong and flexible methods to produce solutions for problems that are not being handled with 
traditional statistical approaches. ML algorithms make it possible to predict students' performance and 
risk of under- or over-performing, for example, as it helps to classify the data into predetermined 
categories (e.g., high performance, medium performance, low performance) (Akcapınar et al., 2019; 
Khosravi & Cooper, 2017).  

Large-scale datasets usually contain several categories, but when the distribution of such 
categories is not uniform, i.e. some of them (the minority) are heavily under-represented when 
compared to others (the majority), that leads to category imbalance. This ‘imbalanced’ or ‘skewed’ 
distribution of category instances results in learning classifiers being biased (Kuncheva et al., 2019; 
Napierala & Stefanowski, 2016). One possible solution to this problem is over-sampling, where 
randomly-selected samples from the minority categories are duplicated. SMOTE is one of the most 



popular algorithms for over-sampling, relying on the concept of nearest neighbours to create its 
synthetic data (Fernandez et al., 2018). 

In this paper, we describe the improvement of the performance results of different ML 
classification algorithms using the SMOTE resampling techniques, applied to a learning analytics 
problem and dataset. Our research question is formulated as follows: How does the combination of 
SMOTE and under-sampling perform, in comparison to traditional ML classification algorithms, when 
handling learning analytics datasets? In our data, the activity of each student reflects the number of 
questions she/he answered related to a certain subject or topic. We analyse and compare seven different 
types of ML algorithms using two threshold metrics, accuracy and F1-score, together with two rank 
metrics, AUC-ROC curves and PR curves (Jeni, Chon & De La Torre, 2013). 

The rest of this paper is organized as follows. Section 2 describes briefly related work in this 
field. Sections 3 and 4, respectively, present the case study and the different methods used in our work. 
An exploratory analysis and the experimental results are described in sections 5 and 6, respectively. 
Section 7 discusses the conclusions and presents possible lines of future work. 
 
 
2. Related Work 
 
Imbalanced classification is a problem in data sets with skewed distributions of data points (Chawla et 
al., 2002; Napierala & Stefanowski, 2016). Data-level approaches are used to address the category 
imbalance problems. The focus of these methods is on re-sizing the training datasets to balance different 
labels and make the dataset suitable for a standard learning algorithm. In order to fix category 
imbalance, resampling methods such as under-sampling and over-sampling methods are used. In 
under-sampling techniques, samples from the majority category are discarded, while in over-sampling 
methods, new minority category samples are generated (Mathew et al., 2015). SMOTE, an approach 
proposed by Chawla et al., (2002), is one of the most well-known over-sampling algorithms. It 
generates new minority data instances by identifying nearest neighbours in input space and applying a 
linear interpolation between them. This way, the new data instances populate areas near other points, 
and should properly resemble real data. Batista et al., (2004) have performed a systematic experimental 
study with 15 real-world datasets and different pre-processing methods such as SMOTE. The results 
indicate that the over-sampling methods provided better AUC than the under-sampling ones. Mathew et 
al., (2015), on the other hand, proposed a kernel-based SMOTE algorithm that generates synthetic data 
points of minority categories directly in the feature space of Support Vector Machine (SVM) classifier. 
In Beyan & Fisher (2015), a new hierarchical decomposition method for imbalanced data sets is 
proposed. The proposed method is based on clustering and outlier detection. These works are focused 
on general classification problems for imbalanced datasets with the goal of improving the performance 
of different algorithms but are not applied to the specific challenges and opportunities of imbalanced 
learning analytics applications. Hasnine et al., (2018) use SMOTE as one of the pre-processing steps in 
their pipeline, among others such as features selection, in order to apply ML for the prediction of 
student performance. However, their paper does not focus on the analysis of SMOTE itself, so it is not 
clear what exactly the advantages and disadvantages of the technique are when applied to an 
imbalanced learning analytics dataset. In our paper, we perform an experimental comparison that is 
specifically suited to compare performances before and after SMOTE, isolating its effects and 
producing objective insights on the impact of its application. By analysing the PR and ROC-AUC 
curves obtained from different classification algorithms, more in-depth understanding of the behaviour 
of balancing methods is provided. 
 
 
3. Dataset Description 
 
We used an imbalanced dataset which includes the learning behaviours of 6,423 medical students (data 
points) who used an online study platform (Hypocampus1) during one year. The students chose their 
own study path through the material, which is arranged in subjects, e.g., orthopaedics or neurology, and 

 
1 https://www.hypocampus.se/. 



topics (or chapters), e.g., cerebrovascular disease or diabetes. During their studies, they are frequently 
faced with questions to test what they have learned. We aggregated all students’ answers per topic in 
order to generate the features, resulting (after data cleaning and pre-processing) in 1,445 features which 
reflect how many questions she/he answered on each of the 1,445 topics (Martins et al., 2019). In 
summary, each of the 6,423 data points indicate the learning behaviour of one student, quantified by the 
amount of questions she/he answered in each of 1,445 available topics. Additionally, each student may 
have a University ID, which indicates where that student comes from (or "Other" for all the students 
who do not have a university ID).  
 
 
4. Methods 
 
In order to identify how well a classifier preformed, a cross-validation procedure was used. In k-fold 
cross-validation, a partition of the dataset is formed by splitting it into k non-overlapping subsets, 
including k-1 training sets and one test set. Then, we can train and test the model k times, each time 
using different train and test sets (Goodfellow et al., 2016; Geron, 2017). We used 5-fold and 10-fold 
cross-validations; 5-fold means for each classifier we choose the mentioned input features that perform 
best on average when we train on 80% of the data and test on the remaining 20%, and 10-fold when we 
train on 90% of the data and test on the remaining 10%. To compare cross-validation results from 
different classifiers, one of the measures used is the average accuracy (or average error), shown in Eq. 1 
(Chawla et al., 2002). In this equation TP or True Positives is the number of positive examples correctly 
classified; TN or True Negatives is the number of negative examples correctly classified; FP or False 
Positives is the number of negative examples incorrectly classified as positive; and FN or False 
Negatives is the number of positive examples incorrectly classified as negative. 

Error rate, that is, 1-Accuracy, is more appropriate to use in balanced datasets, while other 
measures such as ROC and PR curves are more suitable to be used when there are unequal error costs. 
Using PR curves is more suitable for highly-skewed domains where ROC curves may provide an 
excessively optimistic view of the performance (Chawla et al., 2002). In this paper, two ROC-AUC and 
PR curves were used to compare different classification algorithms, summarized with the average 
precision, micro-average and macro-average. A macro-average computes the metric independently for 
each category, and then takes the average, whereas a micro-average aggregates the contributions of all 
categories to compute the average metric. In ROC-AUC and ROC curves, the True Positive Rate (Eq. 2) 
is a fraction calculated as the total number of true positive predictions divided by the sum of the true 
positives and the false negatives, while the False Positive Rate (Eq. 3) is calculated as the total number 
of false positive predictions divided by the sum of the false positives and true negatives. In PR curves, 
Recall (Eq. 4) is a metric that quantifies the number of correct positive predictions made out of all 
positive predictions that could have been made. Recall is calculated as the number of true positives 
divided by the total number of true positives and false negatives. In this curve, Precision (Eq. 5) is a 
metric that quantifies the number of correct positive predictions made, and it is calculated as the number 
of true positives divided by the total number of true positives and false positives (Chawla et al., 2002). 
Finally, to determine a weighted average of the precision and recall values, F1-score is used (Eq. 6) 
(Jeni, Chon & De La Torre, 2013). F1-score range is between 0 and 1, where the maximum shows the 
perfect classification. 
 
Accuracy = (TP + TN) / (TP + TN + FP + FN) (Eq.1) 
TP = TP / (TP + FN)  (Eq.2) 
FP = FP / (TN + FP) (Eq.3) 
Recall = TP / (TP + FN) (Eq.4) 
Precision = TP / (TP + FP) (Eq.5) 
F1 = 2 ´ TP / (2 ´ TP + FP + FN) = 2 ´ ((Precision ´ Recall) / (Precision + Recall)) (Eq.6) 
 
 Additionally, in order to compare and check the statistical significance of the difference in 
results before and after the use of SMOTE, we ran a set of one-tailed Mann-Whitney U tests, one for 
each performance measure, with the significance level set to 0.01. These are non-parametric statistical 
tests suitable for small samples, as is our case. 



4.1 Classification Algorithms 
 
We compare seven different types of ML classification algorithms: Linear (Geron, 2017), k-Nearest 
Neighbors (kNN) (Goodfellow et al., 2016), Decision Tree (Goodfellow et al., 2016), Neural Network 
(Geron, 2017), Support Vector Machines (SVM) (Geron, 2017), Random Forest (Breiman, 2001) and 
XGBoost (Geron, 2017). Due to space limitations, and the fact that these are well-known in the ML 
field, we refrain from discussing them in details here; please see the references for more information. 
Each of these seven well-known algorithms can be configured with different hyperparameters that will 
affect their performance; therefore, we report only on the best configurations found after performing a 
systematic hyperparameter search in each case. 
 
 
5. Experimental Results 
 
Table 1 contains the results of all the considered metrics for the seven ML algorithms, before applying 
the SMOTE method. The mean performance of all algorithms stays around 58%, and while 
micro-average ROC is relatively high (0.85), the rest of the measures including average precision 
(0.56), macro-average ROC (0.71) and F1 scores (0.57) reflect the expected low-quality results of an 
imbalanced dataset. The Random Forest classifier had the best results overall, with 61.70% accuracy in 
5-fold cross-validation, 61.79% in 10-fold cross-validation, 0.63 average area in PR, 0.88 
micro-average area, 0.76 macro-average area in ROC-AUC, and F1 score of 0.62. It was the strongest 
classifier before the application of SMOTE.  

Table 2 shows the results for the same algorithms after applying SMOTE to correct the 
imbalance of the data. The overall results improved drastically, with mean accuracy now around 78% in 
all cases, and all the rest of the measures above 0.80 (mean). All algorithms showed increased 
performance overall, with the Neural Network and Random Forest classifiers staying at the top with 
92.77% and 92.40% accuracy in 5-fold cross-validation, and with 93.20% and 92.81% in 10-fold 
cross-validation, respectively. Random Forest also remains the best classifier according to the rest of 
the performance measures, with 0.96 average area in PR, 0.98 micro-average area, and 0.98 
macro-average area in ROC-AUC. Neural Network, with 0.95, has the highest F1 score, followed 
closely by Random Forest with 0.94. It is interesting to notice that Linear and XGBoost did not improve 
much after SMOTE, reflecting the highly non-linear and complex nature of the data (to which these 
algorithms are not suitable). 

The last row of Table 2 provides the U-values resulting from the Mann-Whitney U tests for 
each measure (as described in Section 4). In all the considered cases, the critical value of U at p < .01 is 
6, so a U-value of less than 6 means statistically-significant results. Most of the measures show a 
statistically-significant increase in the overall performance (highlighted in green), except 
Micro-average ROC (highlighted in red). 

To further illustrate and discuss these results, we focus on the Random Forest algorithm (which 
performed best overall) and show, in Figure 1, three detailed visual comparisons of its performance: the 
confusion matrix, as a heatmap (Pryke, Mostaghim & Nazemi, 2007); the ROC curves; and the PR 
curves. In the confusion matrix (Figures 1a, d), darker cells mean correct class predictions. The main 
problem with imbalanced datasets is immediately apparent in the matrix before SMOTE (Figure 1a): 
the classifier assigned the label “other” to most points (since most darker cells are in the last column to 
the right), resulting in low performance. After SMOTE, however, the problem is mostly solved, as can 
be seen from the darker cells along the diagonal of the matrix. In the ROC curves, the ideal results are 
curves that bend along the top-left of the graph, maintaining a large proportion of TP vs. FP, as is the 
case after SMOTE (Figure 1e). Figure 1b shows that, before SMOTE, the lines are close to the diagonal 
instead. On the other hand, for the PR curve graph, the ideal results are curves that are close to the 
top-right corner, as is again the case after SMOTE (Figure 1f). In Figure 1c we can see that, before 
SMOTE, the lines were near random and scattered among the whole graph. 



Table 1. Performance of ML Algorithms Before SMOTE 

Classifiers Training 
(%) 

5-fold 
(%) 

10-fold 
(%) 

Avg. 
Precision 

Micro-avg. 
ROC 

Macro-avg. 
ROC 

F1 

Linear 54.47 54.29 54.99 0.47 0.80 0.69 0.48 
Decision Tree 57.74 57.64 58.23 0.55 0.85 0.70 0.56 
Neural Network 53.07 54.85 54.65 0.52 0.84 0.73 0.52 
SVM 59.77 59.74 59.91 0.58 0.85 0.69 0.59 
kNN 60.16 60.02 59.94 0.59 0.85 0.72 0.59 
Random Forest 61.95 61.70 61.79 0.63 0.88 0.76 0.62 
XGBoost 62.02 61.30 61.31 0.61 0.86 0.74 0.61 
Mean 58.45 58.50 58.69 0.56 0.85 0.71 0.57 
 

Table 2. Performance of ML Algorithms After SMOTE 

Classifiers Training 
(%) 

5-fold 
(%) 

10-fold 
(%) 

Avg. 
Precision 

Micro-avg. 
ROC 

Macro-avg. 
ROC 

F1 

Linear 64.72 64.15 64.56 0.58 0.82 0.82 0.59 
Decision Tree 84.09 84.24 85.11 0.71 0.75 0.74 0.71 
Neural Network 92.75 92.77 93.20 0.93 0.88 0.88 0.95 
SVM 60.31 61.04 61.64 0.85 0.92 0.92 0.86 
kNN 83.69 84.24 84.85 0.89 0.97 0.97 0.9 
Random Forest 92.07 92.40 92.81 0.96 0.98 0.98 0.94 
XGBoost 69.61 68.29 68.60 0.75 0.89 0.89 0.75 
Mean 78.17 78.16 78.68 0.81 0.89 0.88 0.81 
U-values 2 (<6) 2 (<6) 1 (<6) 3.5 (<6) 13.5 (>6) 1.5 (<6) 3 (<6) 
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Figure 1. Confusion matrices, ROC curves, and PR curves of Random Forest classifier before (a, b, c) 
and after (d, e, f) the use of SMOTE. 

 
 
 
              



6. Conclusion 
 

In this article we have compared the performance of seven machine learning algorithms applied to an 
imbalanced LA problem, to answer our research question on how the combination of SMOTE and 
under-sampling performs compared to traditional ML classification algorithms. The students' dataset 
was collected from a Web-Based Learning Environment during one year and it consists of students 
(data points) described by multidimensional numerical vectors (features). The approach described here 
should be generalizable to any other scenario similar to this. According to the results, the performance 
using SMOTE has widely increased, and Neural Network and Random Forest are the most accurate and 
high-performance classifiers among the tested ML classification algorithms. Thus, we determine that 
the combination of SMOTE and under-sampling performs better than traditional ML classification 
algorithms in an LA context, which reflects other previous and more general results outside of LA. One 
limitation of this approach is that SMOTE is based on linear interpolation between nearest neighbours, 
which limits its application for datasets that are too large and contain highly non-linear relationships 
between its features. The results of a high-performance classification algorithm on educational datasets 
can have practical implications for teachers, that is, given the right visualization technique this sort of 
analysis promise to guide teachers in identifying learning issues and possibly, in the future, predicting 
students’ outcomes.  
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